These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9667044)

  • 1. Wave propagation simulation in normal and infarcted myocardium: computational and modelling issues.
    Maglaveras N; Van Capelle FJ; De Bakker JM
    Med Inform (Lond); 1998; 23(2):105-18. PubMed ID: 9667044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-repolarization refractoriness increases vulnerability to block and initiation of reentrant impulses in heterogeneous infarcted myocardium.
    Cabo C
    Comput Biol Med; 2015 Oct; 65():209-19. PubMed ID: 25987316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on re-entrant arrhythmias and ectopic beats in excitable tissues by bifurcation analyses.
    Chay TR; Lee YS
    J Theor Biol; 1992 Mar; 155(2):137-71. PubMed ID: 1333552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic-mediated influences on microscopic conduction in epicardial regions overlying infarcted myocardium.
    Zuanetti G; Hoyt RH; Corr PB
    Circ Res; 1990 Aug; 67(2):284-302. PubMed ID: 2165442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A massively parallel computer model of propagation through a two-dimensional cardiac syncytium.
    Fishler MG; Thakor NV
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1694-9. PubMed ID: 1721160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-entrant cardiac arrhythmias in computational models of long QT myocardium.
    Clayton RH; Bailey A; Biktashev VN; Holden AV
    J Theor Biol; 2001 Jan; 208(2):215-25. PubMed ID: 11162065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons learned about slow discontinuous conduction from models of impulse propagation.
    Rudy Y
    J Electrocardiol; 2005 Oct; 38(4 Suppl):52-4. PubMed ID: 16226074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced space constant in slowly conducting regions of chronically infarcted canine myocardium.
    Spear JF; Michelson EL; Moore EN
    Circ Res; 1983 Aug; 53(2):176-85. PubMed ID: 6883644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional characteristics of action potential propagation in cardiac muscle. A model study.
    Leon LJ; Roberge FA
    Circ Res; 1991 Aug; 69(2):378-95. PubMed ID: 1860179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ECG forward simulation with the PC].
    Hackstein N; Rammsayer T
    Biomed Tech (Berl); 1994 May; 39(5):98-104. PubMed ID: 8049343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation.
    Boyle PM; Franceschi WH; Constantin M; Hawks C; Desplantez T; Trayanova NA; Vigmond EJ
    J Mol Cell Cardiol; 2019 Mar; 128():117-128. PubMed ID: 30677394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular conduction velocity variability as the basis for re-entrant arrhythmias in the ischemic myocardium.
    Ben-Haim SA; Palti Y
    J Theor Biol; 1992 Feb; 154(3):317-30. PubMed ID: 1593894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular electrophysiological properties in myocardial infarction.
    Wiecha J; Hombach V
    Eur Heart J; 1993 Sep; 14 Suppl E():9-19. PubMed ID: 8223762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study.
    Cimponeriu A; Starmer CF; Bezerianos A
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.