These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9667044)

  • 41. A computer model of cardiac electrical activity for the simulation of arrhythmias.
    Virag N; Vesin JM; Kappenberger L
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2366-71. PubMed ID: 9825349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of strain-dependent conduction slowing on the re-entry formation and maintenance in cardiac muscle: 2D computer simulation.
    Syomin FA; Galushka VA; Tsaturyan AK
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3676. PubMed ID: 36562353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of the size of infarcted area on two kinds of vulnerable window in two dimension ventricular tissue.
    Liang C; Wang K; Li Q; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():305-308. PubMed ID: 31945902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulation of ECG from two pairs of action potentials.
    Wohlfart B
    Clin Physiol; 1993 Sep; 13(5):453-67. PubMed ID: 8222531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations.
    Cole WC; Picone JB; Sperelakis N
    Biophys J; 1988 May; 53(5):809-18. PubMed ID: 3390522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A computer model of re-entry in cardiac tissue.
    Bailie AH; Mitchell RH; Anderson JM
    Comput Biol Med; 1990; 20(1):47-54. PubMed ID: 2328577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiac contraction induces discordant alternans and localized block.
    Radszuweit M; Alvarez-Lacalle E; Bär M; Echebarria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022703. PubMed ID: 25768527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function.
    Benson AP; Stevenson-Cocks HJ; Whittaker DG; White E; Colman MA
    Methods; 2021 Jan; 185():60-81. PubMed ID: 31988002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model of slow conduction in bullfrog atrial trabeculae.
    Murphey CR; Clark JW; Giles WR
    Math Biosci; 1991 Sep; 106(1):85-109. PubMed ID: 1802176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation and experimental studies of the factors influencing the frequency spectrum of cardiac extracellular waveforms.
    Joly D; Savard P; Roberge FA; Vermeulen M; Shenasa M
    J Electrocardiol; 1990 Apr; 23(2):109-25. PubMed ID: 2341814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration.
    Clayton RH; Holden AV
    Prog Biophys Mol Biol; 2004; 85(2-3):473-99. PubMed ID: 15142758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.
    Shaw RM; Rudy Y
    Cardiovasc Res; 1997 Aug; 35(2):256-72. PubMed ID: 9349389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The simulation of the cardiac excitation propagation for the analysis of arrhythmias--analysis of the mechanism of re-entrant excitation propagation induced by electric shock].
    Mitsui K; Shibata N; Fukui Y
    Iyodenshi To Seitai Kogaku; 1988 Jun; 26(2):112-9. PubMed ID: 3241453
    [No Abstract]   [Full Text] [Related]  

  • 55. Characteristic and critical excitation length scales in 1-D and 2-D simulations of reentrant cardiac arrhythmias using simple two-variable models.
    Chernyak YB; Starobin JM
    Crit Rev Biomed Eng; 1999; 27(3-5):359-414. PubMed ID: 10864284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of electrically induced reentrant circuits in a sheet of myocardium.
    Larson C; Dragnev L; Trayanova N
    Ann Biomed Eng; 2003; 31(7):768-80. PubMed ID: 12971610
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation of re-entry in a piece of myocardial tissue: strong sensitivity to spatial and temporal conditions.
    Wohlfart B; Ohlén G; Karlsson L
    Clin Physiol; 1996 Jul; 16(4):417-31. PubMed ID: 8842577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of class I anti-arrhythmic drugs in infarcted tissue.
    Man RY; Bril A
    Clin Invest Med; 1991 Oct; 14(5):466-75. PubMed ID: 1742923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction.
    Ferrero JM; Trenor B; Romero L
    Europace; 2014 Mar; 16(3):405-15. PubMed ID: 24569895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strategy for control of complex low-dimensional dynamics in cardiac tissue.
    Watanabe M; Gilmour RF
    J Math Biol; 1996 Nov; 35(1):73-87. PubMed ID: 9002241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.