These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 9667430)
1. CD1 hearing-impaired mice. II. Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy. Le Calvez S; Guilhaume A; Romand R; Aran JM; Avan P Hear Res; 1998 Jun; 120(1-2):51-61. PubMed ID: 9667430 [TBL] [Abstract][Full Text] [Related]
2. CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology. Le Calvez S; Avan P; Gilain L; Romand R Hear Res; 1998 Jun; 120(1-2):37-50. PubMed ID: 9667429 [TBL] [Abstract][Full Text] [Related]
3. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli. Avan P; Bonfils P; Gilain L; Mom T J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280 [TBL] [Abstract][Full Text] [Related]
4. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)]. Hoth S Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275 [TBL] [Abstract][Full Text] [Related]
5. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. Moulin A J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802 [TBL] [Abstract][Full Text] [Related]
6. Clinical relevance of distortion product emissions by means of receiver operating characteristic (ROC) analysis. Steinhart HU; Bohlender JE; Benttzien S; Hoppe U Scand Audiol; 2001; 30(3):131-40. PubMed ID: 11683451 [TBL] [Abstract][Full Text] [Related]
7. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. Neely ST; Gorga MP; Dorn PA J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203 [TBL] [Abstract][Full Text] [Related]
8. [DPOAE in tinnitus patients with cochlear hearing loss considering hyperacusis and misophonia]. Sztuka A; Pośpiech L; Gawron W; Dudek K Otolaryngol Pol; 2006; 60(5):765-72. PubMed ID: 17263252 [TBL] [Abstract][Full Text] [Related]
9. Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Li D; Henley CM; O'Malley BW Hear Res; 1999 Dec; 138(1-2):65-72. PubMed ID: 10575115 [TBL] [Abstract][Full Text] [Related]
10. Paired measurements of cochlear function and hair cell count in Dutch-belted rabbits with noise-induced hearing loss. Haragopal H; Dorkoski R; Johnson HM; Berryman MA; Tanda S; Day ML Hear Res; 2020 Jan; 385():107845. PubMed ID: 31760262 [TBL] [Abstract][Full Text] [Related]
11. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. Boege P; Janssen T J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865 [TBL] [Abstract][Full Text] [Related]
12. Distortion-product otoacoustic emissions in middle-aged subjects with normal versus potentially presbyacusic high-frequency hearing loss. Nieschalk M; Hustert B; Stoll W Audiology; 1998; 37(2):83-99. PubMed ID: 9547922 [TBL] [Abstract][Full Text] [Related]
13. Determining the cause of hearing loss: differential diagnosis using a comparison of audiometric and otoacoustic emission responses. Mills DM Ear Hear; 2006 Oct; 27(5):508-25. PubMed ID: 16957501 [TBL] [Abstract][Full Text] [Related]
14. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Harding GW; Bohne BA; Lee SC; Salt AN Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889 [TBL] [Abstract][Full Text] [Related]
15. Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions. Johnson TA; Neely ST; Kopun JG; Dierking DM; Tan H; Gorga MP Ear Hear; 2010 Feb; 31(1):74-83. PubMed ID: 19701088 [TBL] [Abstract][Full Text] [Related]
16. Short-term changes of hearing and distortion product otoacoustic emissions in sudden sensorineural hearing loss. Park H; Lee Y; Park M; Kim J; Na B; Shin J Otol Neurotol; 2010 Aug; 31(6):862-6. PubMed ID: 20601916 [TBL] [Abstract][Full Text] [Related]
17. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications. Wagner W; Plinkert PK; Vonthein R; Plontke SK Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908 [TBL] [Abstract][Full Text] [Related]
18. Observations of Distortion Product Otoacoustic Emission Components in Adults With Hearing Loss. Prieve BA; Thomas L; Long G; Talmadge C Ear Hear; 2020; 41(3):652-662. PubMed ID: 31569117 [TBL] [Abstract][Full Text] [Related]
19. Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones. Kirk DL; Moleirinho A; Patuzzi RB Hear Res; 1997 Oct; 112(1-2):69-86. PubMed ID: 9367230 [TBL] [Abstract][Full Text] [Related]
20. Age-related changes in transiently evoked otoacoustic emissions and distortion product otoacoustic emissions in normal-hearing ears. Satoh Y; Kanzaki J; O-Uchi T; Yoshihara S Auris Nasus Larynx; 1998 May; 25(2):121-30. PubMed ID: 9673723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]