These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 966766)

  • 41. Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the 3,17β-HSD gene.
    Xiong G; Maser E
    Chem Biol Interact; 2015 Jun; 234():188-96. PubMed ID: 25481546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective effects of thiol reagents on the binding sites for imipramine and neurotransmitter amines in the rat brain.
    Biassoni R; Vaccari A
    Br J Pharmacol; 1985 Jun; 85(2):447-56. PubMed ID: 2992663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies with the 3-alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni-enzyme-substrate complementarity as the basis of selectivity and steric specificity.
    Ringold HJ; Graves JM; Clark A; Bellas T
    Recent Prog Horm Res; 1967; 23():349-73. PubMed ID: 5597320
    [No Abstract]   [Full Text] [Related]  

  • 44. [Effect of a modification of sarcolemma sulfhydryl groups on the activity of Ca2+- and Mg2+-dependent ATPases].
    Gimmel'reĭkh NG; Koval' ZA
    Ukr Biokhim Zh; 1973; 45(5):587-94. PubMed ID: 4275281
    [No Abstract]   [Full Text] [Related]  

  • 45. Membrane-bound dehydrogenases of Pseudomonas testosteroni.
    Watanabe M; Lefebvre D; Lefebvre Y; Sy LP
    J Steroid Biochem; 1980 Jul; 13(7):821-7. PubMed ID: 6931945
    [No Abstract]   [Full Text] [Related]  

  • 46. [Enzymes involved in modification of the steroid nucleus of industrial mycobacterial strains: isolation, functions, and properties].
    Donova MV; Nikolaeva VM; Egorova OV
    Prikl Biokhim Mikrobiol; 2005; 41(5):514-20. PubMed ID: 16240648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles.
    Baldassare JJ; Robertson DE; McAfee AG; Ho C
    Biochemistry; 1974 Dec; 13(25):5210-4. PubMed ID: 4373033
    [No Abstract]   [Full Text] [Related]  

  • 48. Disulfide bond reduction inhibits norepinephrine accumulation in postganglionic sympathetic nerve endings.
    Simpson LL
    J Pharmacol Exp Ther; 1982 Aug; 222(2):419-23. PubMed ID: 7097562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of pantetheinase with sulfhydryl reagents and disulfides.
    Ricci G; Nardini M; Chiaraluce R; Duprè S; Cavallini D
    Biochim Biophys Acta; 1986 Mar; 870(1):82-91. PubMed ID: 3753883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane-associated steroid-binding proteins of Pseudomonas testosteroni.
    Francis M; Watanabe M
    Can J Microbiol; 1981 Dec; 27(12):1290-7. PubMed ID: 6949624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3(17)beta-Hydroxysteroid dehydrogenase of Pseudomonas testosteroni. A convenient purification and demonstration of multiple molecular forms.
    Schultz RM; Groman EV; Engel LL
    J Biol Chem; 1977 Jun; 252(11):3775-83. PubMed ID: 193845
    [No Abstract]   [Full Text] [Related]  

  • 52. Steroidogenesis in rat leydig cells: changes in activity of 5-ane and 5-ene 3beta-hydroxysteroid dehydrogenases during sexual maturation.
    Wiebe JP
    Endocrinology; 1976 Feb; 98(2):505-13. PubMed ID: 129324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of sulfhydryl reagents on the activity of histidinolphosphatase from Salmonella typhimurium and bakers' yeast.
    Houston LL; Millay RH
    Biochim Biophys Acta; 1974 Nov; 370(1):216-26. PubMed ID: 4371845
    [No Abstract]   [Full Text] [Related]  

  • 54. Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni.
    Yu Y; Liu C; Wang B; Li Y; Zhang H
    Chem Biol Interact; 2015 Jun; 234():221-8. PubMed ID: 25595227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bovine hepatic fructose 1,6-diphosphatase: modification of the catalytic and allosteric properties by sulfhydryl reagents.
    Geller AM; Byrne WL
    Arch Biochem Biophys; 1972 Dec; 153(2):526-36. PubMed ID: 4350806
    [No Abstract]   [Full Text] [Related]  

  • 56. [The phospholipid dependence, enrichment and characterization of microsomal 17beta-hydroxysteroid-oxido reductase and "transhydrogenase activity" from human placenta (author's transl)].
    Pollow K; Runge W; Pollow B; Grunz H; Willems WR; Schmalbeck J
    Hoppe Seylers Z Physiol Chem; 1973 Jul; 354(7):705-21. PubMed ID: 4214749
    [No Abstract]   [Full Text] [Related]  

  • 57. Specificity of oxidation of bile-salt hydroxyl groups by crude extracts of Pseudomonas testosteroni (ATCC 11996) used in determining bile salts.
    Beher WT; Lin GJ
    Clin Chem; 1975 Oct; 21(11):1630-1. PubMed ID: 1164792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catabolism of [4-14C]testosterone by subcellular fractions of human prostate.
    Chamberlain J; Jagarinec N; Ofner P
    Biochem J; 1966 Jun; 99(3):610-6. PubMed ID: 4381587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of protein sulfhydryl groups and protein disulfides of the platelet surface in aggregation processes involving thiol exchange reactions.
    Margaritis A; Priora R; Frosali S; Di Giuseppe D; Summa D; Coppo L; Di Stefano A; Di Simplicio P
    Pharmacol Res; 2011 Jan; 63(1):77-84. PubMed ID: 20883787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification in the mu-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents.
    Gaibelet G; Capeyrou R; Dietrich G; Emorine LJ
    FEBS Lett; 1997 May; 408(2):135-40. PubMed ID: 9187354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.