These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 9667925)
1. Metal-ion regulation of gene expression in yeast. Winge DR; Jensen LT; Srinivasan C Curr Opin Chem Biol; 1998 Apr; 2(2):216-21. PubMed ID: 9667925 [TBL] [Abstract][Full Text] [Related]
2. Transition metals in control of gene expression. O'Halloran TV Science; 1993 Aug; 261(5122):715-25. PubMed ID: 8342038 [TBL] [Abstract][Full Text] [Related]
3. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Szczypka MS; Zhu Z; Silar P; Thiele DJ Yeast; 1997 Dec; 13(15):1423-35. PubMed ID: 9434348 [TBL] [Abstract][Full Text] [Related]
4. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Eide DJ Annu Rev Nutr; 1998; 18():441-69. PubMed ID: 9706232 [TBL] [Abstract][Full Text] [Related]
5. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Rutherford JC; Bird AJ Eukaryot Cell; 2004 Feb; 3(1):1-13. PubMed ID: 14871932 [No Abstract] [Full Text] [Related]
6. The metal chelating and chaperoning effects of clioquinol: insights from yeast studies. Li C; Wang J; Zhou B J Alzheimers Dis; 2010; 21(4):1249-62. PubMed ID: 21504115 [TBL] [Abstract][Full Text] [Related]
7. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Finney LA; O'Halloran TV Science; 2003 May; 300(5621):931-6. PubMed ID: 12738850 [TBL] [Abstract][Full Text] [Related]
8. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module. Farrell RA; Thorvaldsen JL; Winge DR Biochemistry; 1996 Feb; 35(5):1571-80. PubMed ID: 8634288 [TBL] [Abstract][Full Text] [Related]
9. Metal Ion availability in mitochondria. Pierrel F; Cobine PA; Winge DR Biometals; 2007 Jun; 20(3-4):675-82. PubMed ID: 17225062 [TBL] [Abstract][Full Text] [Related]
10. Hammering out details: regulating metal levels in eukaryotes. Ehrensberger KM; Bird AJ Trends Biochem Sci; 2011 Oct; 36(10):524-31. PubMed ID: 21840721 [TBL] [Abstract][Full Text] [Related]
11. Copper-regulatory domain involved in gene expression. Winge DR Prog Nucleic Acid Res Mol Biol; 1998; 58():165-95. PubMed ID: 9308366 [TBL] [Abstract][Full Text] [Related]
12. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. Waters BM; Eide DJ J Biol Chem; 2002 Sep; 277(37):33749-57. PubMed ID: 12095998 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes. Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of nitrogen oxide-mediated disruption of metalloprotein function: an examination of the copper-responsive yeast transcription factor Ace1. Shinyashiki M; Pan CJ; Switzer CH; Fukuto JM Chem Res Toxicol; 2001 Dec; 14(12):1584-9. PubMed ID: 11743740 [TBL] [Abstract][Full Text] [Related]
15. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Takahashi S; Ando A; Takagi H; Shima J Appl Environ Microbiol; 2009 Nov; 75(21):6706-11. PubMed ID: 19749072 [TBL] [Abstract][Full Text] [Related]
16. Metal-metal interaction mediates the iron induction of Drosophila MtnB. Qiang W; Huang Y; Wan Z; Zhou B Biochem Biophys Res Commun; 2017 Jun; 487(3):646-652. PubMed ID: 28435068 [TBL] [Abstract][Full Text] [Related]
17. Low-affinity copper transporter CTR2 is regulated by copper-sensing transcription factor Mac1p in Saccharomyces cerevisiae. Liu L; Qi J; Yang Z; Peng L; Li C Biochem Biophys Res Commun; 2012 Apr; 420(3):600-4. PubMed ID: 22445756 [TBL] [Abstract][Full Text] [Related]
18. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. Perea-García A; Puig S; Peñarrubia L J Exp Bot; 2022 Mar; 73(6):1735-1750. PubMed ID: 34849747 [TBL] [Abstract][Full Text] [Related]
19. Functional genomics and metal metabolism. Eide DJ Genome Biol; 2001; 2(10):REVIEWS1028. PubMed ID: 11597338 [TBL] [Abstract][Full Text] [Related]
20. Metal sensing in Salmonella: implications for pathogenesis. Osman D; Cavet JS Adv Microb Physiol; 2011; 58():175-232. PubMed ID: 21722794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]