These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9667925)

  • 41. Metallosensors, the ups and downs of gene regulation.
    Bird AJ
    Adv Microb Physiol; 2008; 53():231-67. PubMed ID: 17707146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An electrospray ionisation mass spectrometry (ESI-MS) study to probe the metal ion binding site in the DNA binding domain of the yeast transcriptional activator GAL4.
    Gadhavi PL
    FEBS Lett; 1997 Nov; 417(1):145-9. PubMed ID: 9395093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR.
    Changela A; Chen K; Xue Y; Holschen J; Outten CE; O'Halloran TV; Mondragón A
    Science; 2003 Sep; 301(5638):1383-7. PubMed ID: 12958362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification.
    Zhou P; Thiele DJ
    Genes Dev; 1993 Sep; 7(9):1824-35. PubMed ID: 8370529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation.
    Giedroc DP; Chen X; Apuy JL
    Antioxid Redox Signal; 2001 Aug; 3(4):577-96. PubMed ID: 11554446
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper and gene regulation in yeast.
    Zhou P; Thiele DJ
    Biofactors; 1993 May; 4(2):105-15. PubMed ID: 8347274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
    Hassett R; Dix DR; Eide DJ; Kosman DJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):477-84. PubMed ID: 11023834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal-sensing transcription factors Mac1p and Aft1p coordinately regulate vacuolar copper transporter CTR2 in Saccharomyces cerevisiae.
    Qi J; Han A; Yang Z; Li C
    Biochem Biophys Res Commun; 2012 Jun; 423(2):424-8. PubMed ID: 22683637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.
    Jo WJ; Loguinov A; Chang M; Wintz H; Nislow C; Arkin AP; Giaever G; Vulpe CD
    Toxicol Sci; 2008 Jan; 101(1):140-51. PubMed ID: 17785683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study.
    Ferreira GC; Franco R; Mangravita A; George GN
    Biochemistry; 2002 Apr; 41(15):4809-18. PubMed ID: 11939775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes.
    Georgatsou E; Alexandraki D
    Yeast; 1999 May; 15(7):573-84. PubMed ID: 10341420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metalloregulation of yeast membrane steroid receptor homologs.
    Lyons TJ; Villa NY; Regalla LM; Kupchak BR; Vagstad A; Eide DJ
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5506-11. PubMed ID: 15060275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae.
    Rosenfeld L; Reddi AR; Leung E; Aranda K; Jensen LT; Culotta VC
    J Biol Inorg Chem; 2010 Sep; 15(7):1051-62. PubMed ID: 20429018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor.
    Graden JA; Winge DR
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5550-5. PubMed ID: 9159110
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional specialization within the Fur family of metalloregulators.
    Lee JW; Helmann JD
    Biometals; 2007 Jun; 20(3-4):485-99. PubMed ID: 17216355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering.
    Alkim C; Benbadis L; Yilmaz U; Cakar ZP; François JM
    Metallomics; 2013 Aug; 5(8):1043-60. PubMed ID: 23864114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae.
    Moler EJ; Radisky DC; Mian IS
    Physiol Genomics; 2000 Dec; 4(2):127-135. PubMed ID: 11120873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Copper and the ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract.
    Culotta VC; Hsu T; Hu S; Fürst P; Hamer D
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8377-81. PubMed ID: 2682650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.