These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 9667925)
61. Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae. Heo DH; Baek IJ; Kang HJ; Kim JH; Chang M; Jeong MY; Kim TH; Choi ID; Yun CW Biochem J; 2010 Oct; 431(2):257-65. PubMed ID: 20670216 [TBL] [Abstract][Full Text] [Related]
62. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Krężel A; Maret W Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392 [TBL] [Abstract][Full Text] [Related]
63. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124 [TBL] [Abstract][Full Text] [Related]
64. Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains. Geva P; Kahta R; Nakonechny F; Aronov S; Nisnevitch M Environ Sci Pollut Res Int; 2016 Oct; 23(19):19613-25. PubMed ID: 27392627 [TBL] [Abstract][Full Text] [Related]
65. Copper chaperones: personal escorts for metal ions. Field LS; Luk E; Culotta VC J Bioenerg Biomembr; 2002 Oct; 34(5):373-9. PubMed ID: 12539964 [TBL] [Abstract][Full Text] [Related]
66. Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast. Landstetter N; Glaser W; Gregori C; Seipelt J; Kuchler K OMICS; 2010 Dec; 14(6):651-63. PubMed ID: 20695822 [TBL] [Abstract][Full Text] [Related]
67. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Sharma KK; Singh D; Mohite SV; Williamson PR; Kennedy JF Int J Biol Macromol; 2023 Apr; 233():123534. PubMed ID: 36740121 [TBL] [Abstract][Full Text] [Related]
68. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910 [TBL] [Abstract][Full Text] [Related]
69. Binding mode of metal ions to the bacterial iron import protein EfeO. Temtrirath K; Okumura K; Maruyama Y; Mikami B; Murata K; Hashimoto W Biochem Biophys Res Commun; 2017 Nov; 493(2):1095-1101. PubMed ID: 28919419 [TBL] [Abstract][Full Text] [Related]
70. Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators. Gauci VJ; Beckhouse AG; Lyons V; Beh EJ; Rogers PJ; Dawes IW; Higgins VJ FEMS Yeast Res; 2009 Dec; 9(8):1187-95. PubMed ID: 19702872 [TBL] [Abstract][Full Text] [Related]
71. Cloning and functional characterization of the copper/zinc superoxide dismutase gene from the heavy-metal-tolerant yeast Cryptococcus liquefaciens strain N6. Kanamasa S; Sumi K; Yamuki N; Kumasaka T; Miura T; Abe F; Kajiwara S Mol Genet Genomics; 2007 Apr; 277(4):403-12. PubMed ID: 17160414 [TBL] [Abstract][Full Text] [Related]
72. Iron, zinc, and copper in retinal physiology and disease. Ugarte M; Osborne NN; Brown LA; Bishop PN Surv Ophthalmol; 2013; 58(6):585-609. PubMed ID: 24160731 [TBL] [Abstract][Full Text] [Related]
73. [Regulations diversity of fungal copper homeostasis--a review]. Zhu C; Pan J; Yan B; Zhu X Wei Sheng Wu Xue Bao; 2009 Jul; 49(7):841-7. PubMed ID: 19873745 [TBL] [Abstract][Full Text] [Related]
74. Yeast, a model organism for iron and copper metabolism studies. De Freitas J; Wintz H; Kim JH; Poynton H; Fox T; Vulpe C Biometals; 2003 Mar; 16(1):185-97. PubMed ID: 12572678 [TBL] [Abstract][Full Text] [Related]
75. Functional significance and physiological regulation of essential trace metals in fish. Chandrapalan T; Kwong RWM J Exp Biol; 2021 Dec; 224(24):. PubMed ID: 34882772 [TBL] [Abstract][Full Text] [Related]
76. Zinc Transporter-3 Knockout Mice Demonstrate Age-Dependent Alterations in the Metalloproteome. Hancock SM; Portbury SD; Gunn AP; Roberts BR; Bush AI; Adlard PA Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32012946 [TBL] [Abstract][Full Text] [Related]
77. Regulation of cation balance in Saccharomyces cerevisiae. Cyert MS; Philpott CC Genetics; 2013 Mar; 193(3):677-713. PubMed ID: 23463800 [TBL] [Abstract][Full Text] [Related]
78. Zinc homeostasis in the secretory pathway in yeast. Bird AJ; Wilson S Curr Opin Chem Biol; 2020 Apr; 55():145-150. PubMed ID: 32114317 [TBL] [Abstract][Full Text] [Related]
79. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Pontel LB; Scampoli NL; Porwollik S; Checa SK; McClelland M; Soncini FC Microbiology (Reading); 2014 Aug; 160(Pt 8):1659-1669. PubMed ID: 24858080 [TBL] [Abstract][Full Text] [Related]
80. Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. Chen Y; Li F; Mao J; Chen Y; Nielsen J Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723053 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]