These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9667931)

  • 21. Modeling carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS): a trinuclear nickel complex employing deprotonated amides and bridging thiolates.
    Hatlevik Ø; Blanksma MC; Mathrubootham V; Arif AM; Hegg EL
    J Biol Inorg Chem; 2004 Mar; 9(2):238-46. PubMed ID: 14735332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mononuclear Ni(III)-alkyl complexes (alkyl = Me and Et): relevance to the acetyl-CoA synthase and methyl-CoM reductase.
    Lee CM; Chen CH; Liao FX; Hu CH; Lee GH
    J Am Chem Soc; 2010 Jul; 132(27):9256-8. PubMed ID: 20568755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cys-Gly-Cys tripeptide complexes of nickel: binuclear analogues for the catalytic site in acetyl coenzyme a synthase.
    Krishnan R; Riordan CG
    J Am Chem Soc; 2004 Apr; 126(14):4484-5. PubMed ID: 15070343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model Complexes for the Ni
    Bhandari A; Chandra Maji R; Mishra S; Kumar A; Barman SK; Das PP; Ghiassi KB; Olmstead MM; Patra AK
    Inorg Chem; 2018 Nov; 57(21):13713-13727. PubMed ID: 30339375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase.
    Friedmann HC; Klein A; Thauer RK
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):339-48. PubMed ID: 2128801
    [No Abstract]   [Full Text] [Related]  

  • 26. Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori.
    Olson JW; Mehta NS; Maier RJ
    Mol Microbiol; 2001 Jan; 39(1):176-82. PubMed ID: 11123699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surprising cofactors in metalloenzymes.
    Drennan CL; Peters JW
    Curr Opin Struct Biol; 2003 Apr; 13(2):220-6. PubMed ID: 12727516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism.
    Tan X; Surovtsev IV; Lindahl PA
    J Am Chem Soc; 2006 Sep; 128(37):12331-8. PubMed ID: 16967985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases.
    Merrouch M; Benvenuti M; Lorenzi M; Léger C; Fourmond V; Dementin S
    J Biol Inorg Chem; 2018 Jun; 23(4):613-620. PubMed ID: 29445873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila.
    Ferry JG
    Biofactors; 1997; 6(1):25-35. PubMed ID: 9233537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase.
    Manesis AC; O'Connor MJ; Schneider CR; Shafaat HS
    J Am Chem Soc; 2017 Aug; 139(30):10328-10338. PubMed ID: 28675928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not.
    Seravalli J; Xiao Y; Gu W; Cramer SP; Antholine WE; Krymov V; Gerfen GJ; Ragsdale SW
    Biochemistry; 2004 Apr; 43(13):3944-55. PubMed ID: 15049702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?
    Lindahl PA
    Biochemistry; 2002 Feb; 41(7):2097-105. PubMed ID: 11841199
    [No Abstract]   [Full Text] [Related]  

  • 34. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.
    Wang VC; Ragsdale SW; Armstrong FA
    Met Ions Life Sci; 2014; 14():71-97. PubMed ID: 25416391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Nickel enzymes in metabolism of methanogenic bacteria. Lecture held on the occasion of the Otto Warburg medal on September 18, 1984].
    Thauer RK
    Biol Chem Hoppe Seyler; 1985 Feb; 366(2):103-12. PubMed ID: 3921041
    [No Abstract]   [Full Text] [Related]  

  • 36. Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase.
    Darnault C; Volbeda A; Kim EJ; Legrand P; Vernède X; Lindahl PA; Fontecilla-Camps JC
    Nat Struct Biol; 2003 Apr; 10(4):271-9. PubMed ID: 12627225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methylnickel intermediate in a bimetallic mechanism of acetyl-coenzyme A synthesis by anaerobic bacteria.
    Kumar M; Qiu D; Spiro TG; Ragsdale SW
    Science; 1995 Oct; 270(5236):628-30. PubMed ID: 7570019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites.
    Xia W; Li H; Sze KH; Sun H
    J Am Chem Soc; 2009 Jul; 131(29):10031-40. PubMed ID: 19621959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The active sites of molybdenum- and tungsten-containing enzymes.
    McMaster J; Enemark JH
    Curr Opin Chem Biol; 1998 Apr; 2(2):201-7. PubMed ID: 9667924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO.
    Harrop TC; Olmstead MM; Mascharak PK
    J Am Chem Soc; 2004 Nov; 126(45):14714-5. PubMed ID: 15535684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.