These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9668073)

  • 1. Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer.
    Siddhanta U; Presta A; Fan B; Wolan D; Rousseau DL; Stuehr DJ
    J Biol Chem; 1998 Jul; 273(30):18950-8. PubMed ID: 9668073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer.
    Panda K; Ghosh S; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23349-56. PubMed ID: 11325964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme iron reduction and catalysis by a nitric oxide synthase heterodimer containing one reductase and two oxygenase domains.
    Siddhanta U; Wu C; Abu-Soud HM; Zhang J; Ghosh DK; Stuehr DJ
    J Biol Chem; 1996 Mar; 271(13):7309-12. PubMed ID: 8631749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of nitric oxide synthase dimer assembly by a heme-NO-dependent mechanism.
    Chen Y; Panda K; Stuehr DJ
    Biochemistry; 2002 Apr; 41(14):4618-25. PubMed ID: 11926824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
    Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA
    Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer.
    Abu-Soud HM; Yoho LL; Stuehr DJ
    J Biol Chem; 1994 Dec; 269(51):32047-50. PubMed ID: 7528206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions.
    Ghosh DK; Rashid MB; Crane B; Taskar V; Mast M; Misukonis MA; Weinberg JB; Eissa NT
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10392-7. PubMed ID: 11517317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
    Brunner K; Tortschanoff A; Hemmens B; Andrew PJ; Mayer B; Kungl AJ
    Biochemistry; 1998 Dec; 37(50):17545-53. PubMed ID: 9860870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH.
    Sagami I; Sato Y; Daff S; Shimizu T
    J Biol Chem; 2000 Aug; 275(34):26150-7. PubMed ID: 10846172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase.
    Presta A; Siddhanta U; Wu C; Sennequier N; Huang L; Abu-Soud HM; Erzurum S; Stuehr DJ
    Biochemistry; 1998 Jan; 37(1):298-310. PubMed ID: 9425051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of the second step in NO synthesis using the isolated oxygenase and reductase domains of macrophage NO synthase.
    Ghosh DK; Abu-Soud HM; Stuehr DJ
    Biochemistry; 1995 Sep; 34(36):11316-20. PubMed ID: 7547858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The high-potential flavin and heme of nitric oxide synthase are not magnetically linked: implications for electron transfer.
    Perry JM; Moon N; Zhao Y; Dunham WR; Marletta MA
    Chem Biol; 1998 Jul; 5(7):355-64. PubMed ID: 9662510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
    Agapie T; Suseno S; Woodward JJ; Stoll S; Britt RD; Marletta MA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16221-6. PubMed ID: 19805284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR spectroscopic characterization of neuronal NO synthase.
    Galli C; MacArthur R; Abu-Soud HM; Clark P; Steuhr DJ; Brudvig GW
    Biochemistry; 1996 Feb; 35(8):2804-10. PubMed ID: 8611587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential thiol requirement to restore pterin- or substrate-binding capability and to regenerate native enzyme-type high-spin heme spectra in the Escherichia coli-expressed tetrahydrobiopterin-free oxygenase domain of neuronal nitric oxide synthase.
    Sono M; Ledbetter AP; McMillan K; Roman LJ; Shea TM; Masters BS; Dawson JH
    Biochemistry; 1999 Nov; 38(48):15853-62. PubMed ID: 10625450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis.
    Sagami I; Daff S; Shimizu T
    J Biol Chem; 2001 Aug; 276(32):30036-42. PubMed ID: 11395516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of acidic residues in the oxygenase domain of inducible nitric-oxide synthase identifies a glutamate involved in arginine binding.
    Gachhui R; Ghosh DK; Wu C; Parkinson J; Crane BR; Stuehr DJ
    Biochemistry; 1997 Apr; 36(17):5097-103. PubMed ID: 9136868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.