BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9668099)

  • 1. Overexpression and kinetic characterization of the carboxyltransferase component of acetyl-CoA carboxylase.
    Blanchard CZ; Waldrop GL
    J Biol Chem; 1998 Jul; 273(30):19140-5. PubMed ID: 9668099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase.
    Levert KL; Waldrop GL
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1213-7. PubMed ID: 11883946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput screening assay for the carboxyltransferase subunit of acetyl-CoA carboxylase.
    Santoro N; Brtva T; Roest SV; Siegel K; Waldrop GL
    Anal Biochem; 2006 Jul; 354(1):70-7. PubMed ID: 16707089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA inhibits catalysis by the carboxyltransferase subunit of acetyl-CoA carboxylase: implications for active site communication.
    Benson BK; Meades G; Grove A; Waldrop GL
    Protein Sci; 2008 Jan; 17(1):34-42. PubMed ID: 18156466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two functions: enzymatic activity and translational repression by carboxyltransferase.
    Meades G; Benson BK; Grove A; Waldrop GL
    Nucleic Acids Res; 2010 Mar; 38(4):1217-27. PubMed ID: 19965770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of negative feedback regulation by carboxyltransferase.
    Meades G; Cai X; Thalji NK; Waldrop GL; de Queiroz M
    IET Syst Biol; 2011 May; 5(3):220-8. PubMed ID: 21639594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetyl-CoA carboxylase from Escherichia coli exhibits a pronounced hysteresis when inhibited by palmitoyl-acyl carrier protein.
    Evans A; Ribble W; Schexnaydre E; Waldrop GL
    Arch Biochem Biophys; 2017 Dec; 636():100-109. PubMed ID: 29100983
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X
    mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.
    Kimura Y; Miyake R; Tokumasu Y; Sato M
    J Bacteriol; 2000 Oct; 182(19):5462-9. PubMed ID: 10986250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction.
    Lümmen P; Khajehali J; Luther K; Van Leeuwen T
    Insect Biochem Mol Biol; 2014 Dec; 55():1-8. PubMed ID: 25281882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the carboxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme.
    Bilder P; Lightle S; Bainbridge G; Ohren J; Finzel B; Sun F; Holley S; Al-Kassim L; Spessard C; Melnick M; Newcomer M; Waldrop GL
    Biochemistry; 2006 Feb; 45(6):1712-22. PubMed ID: 16460018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase.
    Kozaki A; Kamada K; Nagano Y; Iguchi H; Sasaki Y
    J Biol Chem; 2000 Apr; 275(14):10702-8. PubMed ID: 10744768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component.
    Kozaki A; Sasaki Y
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):541-6. PubMed ID: 10215591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A capillary electrophoretic assay for acetyl coenzyme A carboxylase.
    Bryant SK; Waldrop GL; Gilman SD
    Anal Biochem; 2013 Jun; 437(1):32-8. PubMed ID: 23435309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity.
    Freiberg C; Brunner NA; Schiffer G; Lampe T; Pohlmann J; Brands M; Raabe M; Häbich D; Ziegelbauer K
    J Biol Chem; 2004 Jun; 279(25):26066-73. PubMed ID: 15066985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, activity, and inhibition of the Carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis.
    Reddy MC; Breda A; Bruning JB; Sherekar M; Valluru S; Thurman C; Ehrenfeld H; Sacchettini JC
    Antimicrob Agents Chemother; 2014 Oct; 58(10):6122-32. PubMed ID: 25092705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors.
    Jelenska J; Sirikhachornkit A; Haselkorn R; Gornicki P
    J Biol Chem; 2002 Jun; 277(26):23208-15. PubMed ID: 11980900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.
    Gerhardt EC; Rodrigues TE; Müller-Santos M; Pedrosa FO; Souza EM; Forchhammer K; Huergo LF
    Mol Microbiol; 2015 Mar; 95(6):1025-35. PubMed ID: 25557370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.