These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9669041)

  • 1. Characterization of sodium transport in gustatory epithelia from the hamster and rat.
    Gilbertson TA; Zhang H
    Chem Senses; 1998 Jun; 23(3):283-93. PubMed ID: 9669041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-inhibition in amiloride-sensitive sodium channels in taste receptor cells.
    Gilbertson TA; Zhang H
    J Gen Physiol; 1998 May; 111(5):667-77. PubMed ID: 9565404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basolateral amiloride-sensitive Na+ transport pathway in rat tongue epithelium.
    Mierson S; Olson MM; Tietz AE
    J Neurophysiol; 1996 Aug; 76(2):1297-309. PubMed ID: 8871237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway.
    Heck GL; Mierson S; DeSimone JA
    Science; 1984 Jan; 223(4634):403-5. PubMed ID: 6691151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of amiloride-sensitive sodium channels in the oral cavity of the hamster.
    Gilbertson TA; Fontenot DT
    Chem Senses; 1998 Oct; 23(5):495-9. PubMed ID: 9805633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue.
    Huang T; Stähler F
    BMC Neurosci; 2009 Mar; 10():19. PubMed ID: 19284620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat.
    Kretz O; Barbry P; Bock R; Lindemann B
    J Histochem Cytochem; 1999 Jan; 47(1):51-64. PubMed ID: 9857212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction.
    Desimone JA; Heck GL; Mierson S; Desimone SK
    J Gen Physiol; 1984 May; 83(5):633-56. PubMed ID: 6330275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport in rat tongue epithelium in vitro: a developmental study.
    Settles AM; Mierson S
    Pharmacol Biochem Behav; 1993 Sep; 46(1):83-8. PubMed ID: 7504822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue.
    Doolin RE; Gilbertson TA
    J Gen Physiol; 1996 Apr; 107(4):545-54. PubMed ID: 8722566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction.
    Mierson S; DeSimone SK; Heck GL; DeSimone JA
    J Gen Physiol; 1988 Jul; 92(1):87-111. PubMed ID: 3171536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of rat chorda tympani sodium responses: evidence for age-dependent changes in global amiloride-sensitive Na(+) channel kinetics.
    Hendricks SJ; Stewart RE; Heck GL; DeSimone JA; Hill DL
    J Neurophysiol; 2000 Sep; 84(3):1531-44. PubMed ID: 10980025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride.
    Avenet P; Lindemann B
    J Membr Biol; 1991 Oct; 124(1):33-41. PubMed ID: 1766010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt and acid studies on canine lingual epithelium.
    Simon SA; Garvin JL
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C398-408. PubMed ID: 4061627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gustatory responses of the mouse chorda tympani nerve vary based on region of tongue stimulation.
    Dana RM; McCaughey SA
    Chem Senses; 2015 Jun; 40(5):335-44. PubMed ID: 25899807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone.
    Lin W; Finger TE; Rossier BC; Kinnamon SC
    J Comp Neurol; 1999 Mar; 405(3):406-20. PubMed ID: 10076935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction.
    Gilbertson TA; Avenet P; Kinnamon SC; Roper SD
    J Gen Physiol; 1992 Nov; 100(5):803-24. PubMed ID: 1335477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds.
    Roebber JK; Roper SD; Chaudhari N
    J Neurosci; 2019 Aug; 39(32):6224-6232. PubMed ID: 31171579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The identity of the current carriers in canine lingual epithelium in vitro.
    Mierson S; Heck GL; DeSimone SK; Biber TU; DeSimone JA
    Biochim Biophys Acta; 1985 Jun; 816(2):283-93. PubMed ID: 4005245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependence of the rat chorda tympani response to Na+ salts: implications for the functional organization of taste receptor cells.
    Ye Q; Heck GL; DeSimone JA
    J Neurophysiol; 1993 Jul; 70(1):167-78. PubMed ID: 8395573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.