BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9669051)

  • 1. The influence of acid on astringency of alum and phenolic compounds.
    Peleg H; Bodine KK; Noble AC
    Chem Senses; 1998 Jun; 23(3):371-8. PubMed ID: 9669051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods.
    Fleming EE; Ziegler GR; Hayes JE
    Physiol Behav; 2016 Sep; 163():56-63. PubMed ID: 27129672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of astringent substances.
    Lawless HT; Corrigan CJ; Lee CB
    Chem Senses; 1994 Apr; 19(2):141-54. PubMed ID: 8055264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of salivary proteins in the mechanism of astringency.
    Lee CA; Ismail B; Vickers ZM
    J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids.
    Sowalsky RA; Noble AC
    Chem Senses; 1998 Jun; 23(3):343-9. PubMed ID: 9669047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Effect of Cold Soak Duration on Phenolic Extraction during Cabernet Sauvignon Fermentation.
    Panprivech S; Lerno LA; Brenneman CA; Block DE; Oberholster A
    Molecules; 2015 May; 20(5):7974-89. PubMed ID: 25946556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Different Enological Tannins on Oxygen Consumption, Phenolic Compounds, Color and Astringency Evolution of Aglianico Wine.
    Picariello L; Rinaldi A; Forino M; Errichiello F; Moio L; Gambuti A
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33050381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.
    Schöbel N; Radtke D; Kyereme J; Wollmann N; Cichy A; Obst K; Kallweit K; Kletke O; Minovi A; Dazert S; Wetzel CH; Vogt-Eisele A; Gisselmann G; Ley JP; Bartoshuk LM; Spehr J; Hofmann T; Hatt H
    Chem Senses; 2014 Jul; 39(6):471-87. PubMed ID: 24718416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach.
    Fleming EE; Ziegler GR; Hayes JE
    Chem Senses; 2016 Sep; 41(7):601-10. PubMed ID: 27252355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the interaction between mucin and oenological tannins by Surface Plasmon Resonance (SPR); relationship with astringency.
    Gombau J; Nadal P; Canela N; Gómez-Alonso S; García-Romero E; Smith P; Hermosín-Gutiérrez I; Canals JM; Zamora F
    Food Chem; 2019 Mar; 275():397-406. PubMed ID: 30724213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine.
    González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F
    J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astringent compounds suppress taste responses in gerbil.
    Schiffman SS; Suggs MS; Simon SA
    Brain Res; 1992 Nov; 595(1):1-11. PubMed ID: 1467944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype.
    Melis M; Yousaf NY; Mattes MZ; Cabras T; Messana I; Crnjar R; Tomassini Barbarossa I; Tepper BJ
    Physiol Behav; 2017 May; 173():163-173. PubMed ID: 28130087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cell-based quaternary system to unveil the effect of pectic polysaccharides on oral astringency.
    Brandão E; Jesus M; Guerreiro C; Maricato É; Coimbra MA; Mateus N; de Freitas V; Soares S
    Carbohydr Polym; 2024 Jan; 323():121378. PubMed ID: 37940274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of the perception and mitigation of astringency associated with phenolic compounds.
    Huang R; Xu C
    Compr Rev Food Sci Food Saf; 2021 Jan; 20(1):1036-1074. PubMed ID: 33340236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astringency of organic acids is related to pH.
    Lawless HT; Horne J; Giasi P
    Chem Senses; 1996 Aug; 21(4):397-403. PubMed ID: 8866103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction and action mechanism of starch with different phenolic compounds.
    Chen N; Gao HX; He Q; Yu ZL; Zeng WC
    Int J Food Sci Nutr; 2020 Sep; 71(6):726-737. PubMed ID: 32009476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review.
    Wei F; Wang J; Luo L; Tayyab Rashid M; Zeng L
    Food Res Int; 2023 Aug; 170():112994. PubMed ID: 37316067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions.
    Azevedo J; Jesus M; Brandão E; Soares S; Oliveira J; Lopes P; Mateus N; de Freitas V
    Food Chem; 2022 Jan; 367():130607. PubMed ID: 34388630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.