These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9669332)

  • 1. Cis- and trans-splicing and RNA editing are required for the expression of nad2 in wheat mitochondria.
    Morawala-Patell V; Gualberto JM; Lamattina L; Grienenberger JM; Bonnard G
    Mol Gen Genet; 1998 Jun; 258(5):503-11. PubMed ID: 9669332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA editing status of nad7 intron domains in wheat mitochondria.
    Carrillo C; Bonen L
    Nucleic Acids Res; 1997 Jan; 25(2):403-9. PubMed ID: 9016571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rps4-gene is encoded upstream of the nad2-gene in Arabidopsis mitochondria.
    Lippok B; Brennicke A; Unseld M
    Biol Chem Hoppe Seyler; 1996 Apr; 377(4):251-7. PubMed ID: 8737990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria.
    Pereira de Souza A; Jubier MF; Delcher E; Lancelin D; Lejeune B
    Plant Cell; 1991 Dec; 3(12):1363-78. PubMed ID: 1726722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria.
    Binder S; Marchfelder A; Brennicke A; Wissinger B
    J Biol Chem; 1992 Apr; 267(11):7615-23. PubMed ID: 1559998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing and editing of rps10 transcripts in potato mitochondria.
    Zanlungo S; Quiñones V; Moenne A; Holuigue L; Jordana X
    Curr Genet; 1995 May; 27(6):565-71. PubMed ID: 7553943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA editing in mitochondrial trans-introns is required for splicing.
    Farré JC; Aknin C; Araya A; Castandet B
    PLoS One; 2012; 7(12):e52644. PubMed ID: 23285127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences.
    Wissinger B; Schuster W; Brennicke A
    Cell; 1991 May; 65(3):473-82. PubMed ID: 1850322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential RNA editing in closely related introns in Oenothera mitochondria.
    Lippok B; Brennicke A; Wissinger B
    Mol Gen Genet; 1994 Apr; 243(1):39-46. PubMed ID: 7514712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria.
    Knoop V; Schuster W; Wissinger B; Brennicke A
    EMBO J; 1991 Nov; 10(11):3483-93. PubMed ID: 1915303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA editing of the transcript coding for subunit 4 of NADH dehydrogenase in wheat mitochondria: uneven distribution of the editing sites among the four exons.
    Lamattina L; Grienenberger JM
    Nucleic Acids Res; 1991 Jun; 19(12):3275-82. PubMed ID: 1712098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces.
    Chapdelaine Y; Bonen L
    Cell; 1991 May; 65(3):465-72. PubMed ID: 1902143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rapeseed mitochondrial gene for subunit 2 of the NADH dehydrogenase complex: a trans-spliced structure is conserved in one of the smallest plant mitochondrial genomes.
    Handa H; Mizobuchi-Fukuoka R; Pinyarat W
    Curr Genet; 1997 Apr; 31(4):336-42. PubMed ID: 9108141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion.
    Conklin PL; Wilson RK; Hanson MR
    Genes Dev; 1991 Aug; 5(8):1407-15. PubMed ID: 1869047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles.
    Farré JC; Araya A
    Nucleic Acids Res; 2001 Jun; 29(12):2484-91. PubMed ID: 11410655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times.
    Malek O; Brennicke A; Knoop V
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):553-8. PubMed ID: 9012822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA editing of a group II intron in Oenothera as a prerequisite for splicing.
    Börner GV; Mörl M; Wissinger B; Brennicke A; Schmelzer C
    Mol Gen Genet; 1995 Mar; 246(6):739-44. PubMed ID: 7898443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort.
    Malek O; Knoop V
    RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs.
    Bégu D; Araya A
    Curr Genet; 2009 Feb; 55(1):69-79. PubMed ID: 19112563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.