These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 9669545)

  • 1. Acute effects of 50 Hz, 100 microT magnetic field exposure on visual duration discrimination at two different times of the day.
    Kazantzis N; Podd J; Whittington C
    Bioelectromagnetics; 1998; 19(5):310-7. PubMed ID: 9669545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects of 50 Hz magnetic field exposure on human visual task and cardiovascular performance.
    Whittington CJ; Podd JV; Rapley BR
    Bioelectromagnetics; 1996; 17(2):131-7. PubMed ID: 8860730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of daytime 50 Hz, 100 microT(rms) magnetic field or bright light exposure effect on human performance and psychophysiological parameters.
    Crasson M; Legros JJ
    Bioelectromagnetics; 2005 Apr; 26(3):225-33. PubMed ID: 15768425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Provocation study of persons with perceived electrical hypersensitivity and controls using magnetic field exposure and recording of electrophysiological characteristics.
    Lyskov E; Sandström M; Mild KH
    Bioelectromagnetics; 2001 Oct; 22(7):457-62. PubMed ID: 11568930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of extremely low-frequency magnetic field exposure on cognitive functions: results of a meta-analysis.
    Barth A; Ponocny I; Ponocny-Seliger E; Vana N; Winker R
    Bioelectromagnetics; 2010 Apr; 31(3):173-9. PubMed ID: 19753600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No influence of 20 and 400 microT, 50 Hz magnetic field exposure on cognitive function in humans.
    Delhez M; Legros JJ; Crasson M
    Bioelectromagnetics; 2004 Dec; 25(8):592-8. PubMed ID: 15515037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of effects of low level microwave field by method of face masking.
    Rodina A; Lass J; Riipulk J; Bachmann T; Hinrikus H
    Bioelectromagnetics; 2005 Oct; 26(7):571-7. PubMed ID: 16142782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of female rats to a 100-microT 50 Hz magnetic field does not induce consistent changes in nocturnal levels of melatonin.
    Löscher W; Mevissen M; Lerchl A
    Radiat Res; 1998 Nov; 150(5):557-67. PubMed ID: 9806598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No influence on selected parameters of human visual perception of 1970 MHz UMTS-like exposure.
    Schmid G; Sauter C; Stepansky R; Lobentanz IS; Zeitlhofer J
    Bioelectromagnetics; 2005 May; 26(4):243-50. PubMed ID: 15832335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of information and 50 Hz magnetic fields on cognitive performance and reported symptoms.
    Nevelsteen S; Legros JJ; Crasson M
    Bioelectromagnetics; 2007 Jan; 28(1):53-63. PubMed ID: 16988993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brief exposure to a 50 Hz, 100 microT magnetic field: effects on reaction time, accuracy, and recognition memory.
    Podd J; Abbott J; Kazantzis N; Rowland A
    Bioelectromagnetics; 2002 Apr; 23(3):189-95. PubMed ID: 11891748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute exposure to power-frequency magnetic fields has no effect on the acquisition of a spatial learning task by adult male mice.
    Sienkiewicz ZJ; Haylock RG; Saunders RD
    Bioelectromagnetics; 1996; 17(3):180-6. PubMed ID: 8809357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer.
    Thun-Battersby S; Mevissen M; Löscher W
    Cancer Res; 1999 Aug; 59(15):3627-33. PubMed ID: 10446973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rats can discriminate illuminance, but not magnetic fields, as a stimulus for learning a two-choice discrimination.
    Creim JA; Lovely RH; Miller DL; Anderson LE
    Bioelectromagnetics; 2002 Oct; 23(7):545-9. PubMed ID: 12224059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure to extremely low frequency magnetic fields among working women and homemakers.
    McCurdy AL; Wijnberg L; Loomis D; Savitz D; Nylander-French LA
    Ann Occup Hyg; 2001 Nov; 45(8):643-50. PubMed ID: 11718660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thirty-minute mobile phone exposure on saccades.
    Terao Y; Okano T; Furubayashi T; Yugeta A; Inomata-Terada S; Ugawa Y
    Clin Neurophysiol; 2007 Jul; 118(7):1545-56. PubMed ID: 17466587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram.
    Croft RJ; Hamblin DL; Spong J; Wood AW; McKenzie RJ; Stough C
    Bioelectromagnetics; 2008 Jan; 29(1):1-10. PubMed ID: 17786925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the geomagnetic field experienced by the International Space Station in its revolution around the Earth: effects on psychophysiological responses to affective picture viewing.
    Del Seppia C; Mezzasalma L; Messerotti M; Cordelli A; Ghione S
    Neurosci Lett; 2006 Jun; 400(3):197-202. PubMed ID: 16529860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sensitivity of human event-related potentials and reaction time to mobile phone emitted electromagnetic fields.
    Hamblin DL; Croft RJ; Wood AW; Stough C; Spong J
    Bioelectromagnetics; 2006 May; 27(4):265-73. PubMed ID: 16437544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.