These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9669659)

  • 1. Self-association of G-rich oligodeoxyribonucleotides under conditions promoting purine-motif triplex formation.
    Cheng AJ; Wang JC; Van Dyke MW
    Antisense Nucleic Acid Drug Dev; 1998 Jun; 8(3):215-25. PubMed ID: 9669659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides.
    Olivas WM; Maher LJ
    Biochemistry; 1995 Jan; 34(1):278-84. PubMed ID: 7819208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation.
    Cheng AJ; Van Dyke MW
    Nucleic Acids Res; 1993 Dec; 21(24):5630-5. PubMed ID: 8284208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cations on purine.purine.pyrimidine triple helix formation in mixed-valence salt solutions.
    Floris R; Scaggiante B; Manzini G; Quadrifoglio F; Xodo LE
    Eur J Biochem; 1999 Mar; 260(3):801-9. PubMed ID: 10103010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
    Lacoste J; François JC; Hélène C
    Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligodeoxyribonucleotide length and sequence effects on intramolecular and intermolecular G-quartet formation.
    Cheng AJ; Van Dyke MW
    Gene; 1997 Sep; 197(1-2):253-60. PubMed ID: 9332373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine.
    Giovannangéli C; Rougée M; Garestier T; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8631-5. PubMed ID: 1528873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic investigation of an intramolecular DNA triplex containing both G.G:C and T.A:T triads and its complex with netropsin.
    Gondeau C; Maurizot JC; Durand M
    J Biomol Struct Dyn; 1998 Jun; 15(6):1133-45. PubMed ID: 9669558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation.
    Smargiasso N; Rosu F; Hsia W; Colson P; Baker ES; Bowers MT; De Pauw E; Gabelica V
    J Am Chem Soc; 2008 Aug; 130(31):10208-16. PubMed ID: 18627159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsionally-strained DNA and intermolecular purine-purine-pyrimidine triple-helix formation.
    Musso M; Van Dyke MW
    Mol Cell Biochem; 1996 Jan; 154(1):65-70. PubMed ID: 8717418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences.
    Blume SW; Guarcello V; Zacharias W; Miller DM
    Nucleic Acids Res; 1997 Feb; 25(3):617-25. PubMed ID: 9016604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triple helical structures involving inosine: there is a penalty for promiscuity.
    Mills M; Völker J; Klump HH
    Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural polymorphism of telomeric DNA regulated by pH and divalent cation.
    Miyoshi D; Matsumura S; Li W; Sugimoto N
    Nucleosides Nucleotides Nucleic Acids; 2003 Feb; 22(2):203-21. PubMed ID: 12744606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation.
    Beal PA; Dervan PB
    Science; 1991 Mar; 251(4999):1360-3. PubMed ID: 2003222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.