These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9670281)
1. The physical basis for radiotherapy with neutrons. Vynckier S; Schmidt R Recent Results Cancer Res; 1998; 150():1-30. PubMed ID: 9670281 [TBL] [Abstract][Full Text] [Related]
2. Dosimetry of clinical neutron and proton beams: an overview of recommendations. Vynckier S; ; Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710 [TBL] [Abstract][Full Text] [Related]
3. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
4. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators. Cardenas CE; Nitsch PL; Kudchadker RJ; Howell RM; Kry SF J Appl Clin Med Phys; 2016 Jul; 17(4):442-455. PubMed ID: 27455499 [TBL] [Abstract][Full Text] [Related]
5. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE. Booz J; Fidorra J Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510 [TBL] [Abstract][Full Text] [Related]
6. Present status, trends and needs in fast neutron therapy. Wambersie A; Menzel HG Bull Cancer Radiother; 1996; 83 Suppl():68s-77s. PubMed ID: 8949755 [TBL] [Abstract][Full Text] [Related]
7. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam. Endo S; Tanaka K; Takada M; Onizuka Y; Miyahara N; Sato T; Ishikawa M; Maeda N; Hayabuchi N; Shizuma K; Hoshi M Med Phys; 2007 Sep; 34(9):3571-8. PubMed ID: 17926960 [TBL] [Abstract][Full Text] [Related]
8. Microdosimetric specification of radiation quality in neutron radiation therapy. Menzel HG; Pihet P; Wambersie A Int J Radiat Biol; 1990 Apr; 57(4):865-83. PubMed ID: 1969913 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose. Yonai S; Matsufuji N; Kanai T Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113 [TBL] [Abstract][Full Text] [Related]
10. [The shape of the absorbed dosage in neutron irradiation of a water phantom]. Kapchigashev SP; Chernichenko IM; Kuznetsov MV; Obaturov GM; Baranov OV; Korobeĭnikov VV Med Radiol (Mosk); 1990 Feb; 35(2):45-8. PubMed ID: 2314206 [TBL] [Abstract][Full Text] [Related]
11. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J; Booz J Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [TBL] [Abstract][Full Text] [Related]
12. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy. Wambersie A Strahlenther Onkol; 1999 Jun; 175 Suppl 2():39-43. PubMed ID: 10394395 [TBL] [Abstract][Full Text] [Related]
13. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor. Endo S; Onizuka Y; Ishikawa M; Takada M; Sakurai Y; Kobayashi T; Tanaka K; Hoshi M; Shizuma K Radiat Prot Dosimetry; 2004; 110(1-4):641-4. PubMed ID: 15353723 [TBL] [Abstract][Full Text] [Related]
14. Specification of radiation quality in fast neutron therapy: microdosimetric and radiobiological approach. Gueulette J; Menzel HG; Pihet P; Wambersie A Recent Results Cancer Res; 1998; 150():31-53. PubMed ID: 9670282 [TBL] [Abstract][Full Text] [Related]
15. Triple chamber technique for thermal neutron dose measurements in fast neutron beams. Schmidt R; Hess A Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343 [TBL] [Abstract][Full Text] [Related]
16. Method of Monte Carlo simulation verification in hadron therapy with non-tissue equivalent detectors. Rosenfeld A; Wroe A; Carolan M; Cornelius I Radiat Prot Dosimetry; 2006; 119(1-4):487-90. PubMed ID: 16644965 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo calculations to characterize the source for neutron therapy facilities. Bohm TD; Deluca PM; Cox LJ; Maughan RL; Jones DT; Lennox A Med Phys; 1999 May; 26(5):783-92. PubMed ID: 10360543 [TBL] [Abstract][Full Text] [Related]
18. Dosimetry of low-energy neutrons using low-pressure proportional counters. Schuhmacher H; Alberts WG; Menzel HG; Bühler G Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347 [TBL] [Abstract][Full Text] [Related]
19. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors. Rasouli FS; Masoudi SF Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433 [TBL] [Abstract][Full Text] [Related]
20. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700. Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]