These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds. Lucero JC; Koenig LL J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896 [TBL] [Abstract][Full Text] [Related]
3. Medial surface dynamics of an in vivo canine vocal fold during phonation. Döllinger M; Berry DA; Berke GS J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical modeling of register transitions and the role of vocal tract resonators. Tokuda IT; Zemke M; Kob M; Herzel H J Acoust Soc Am; 2010 Mar; 127(3):1528-36. PubMed ID: 20329853 [TBL] [Abstract][Full Text] [Related]
5. Vibration parameter extraction from endoscopic image series of the vocal folds. Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815 [TBL] [Abstract][Full Text] [Related]
6. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation. Doellinger M; Berry DA; Berke GS Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711 [TBL] [Abstract][Full Text] [Related]
7. A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset. Lucero JC J Acoust Soc Am; 1999 Jan; 105(1):423-31. PubMed ID: 9921668 [TBL] [Abstract][Full Text] [Related]
9. Phonation threshold pressure in a physical model of the vocal fold mucosa. Titze IR; Schmidt SS; Titze MR J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648 [TBL] [Abstract][Full Text] [Related]
10. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326 [TBL] [Abstract][Full Text] [Related]
11. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Zhang Z; Neubauer J; Berry DA J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742 [TBL] [Abstract][Full Text] [Related]
12. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias. Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268 [TBL] [Abstract][Full Text] [Related]
13. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds. Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487 [TBL] [Abstract][Full Text] [Related]
16. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds. Lucero JC; Koenig LL J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679 [TBL] [Abstract][Full Text] [Related]
17. Using the relaxation oscillations principle for simple phonation modeling. Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814 [TBL] [Abstract][Full Text] [Related]
18. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling. Bailly L; Henrich N; Pelorson X J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769 [TBL] [Abstract][Full Text] [Related]
19. The influence of subglottal acoustics on laboratory models of phonation. Zhang Z; Neubauer J; Berry DA J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478 [TBL] [Abstract][Full Text] [Related]
20. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]