These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9670539)

  • 1. Vocal tract area functions for an adult female speaker based on volumetric imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1998 Jul; 104(1):471-87. PubMed ID: 9670539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002.
    Story BH
    J Acoust Soc Am; 2008 Jan; 123(1):327-35. PubMed ID: 18177162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of synthetic vowels based on selected vocal tract area functions.
    Bunton K; Story BH
    J Acoust Soc Am; 2009 Jan; 125(1):19-22. PubMed ID: 19173389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional vocal tract imaging and formant structure: varying vocal register, pitch, and loudness.
    Tom K; Titze IR; Hoffman EA; Story BH
    J Acoust Soc Am; 2001 Feb; 109(2):742-7. PubMed ID: 11248978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part II. The rhotics.
    Alwan A; Narayanan S; Haker K
    J Acoust Soc Am; 1997 Feb; 101(2):1078-89. PubMed ID: 9035399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of synthetic vowel exemplars of 4-year-old children and estimation of their corresponding vocal tract shapes.
    McGowan RS
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2850-8. PubMed ID: 17139743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the ability of a physiologically constrained area function model of the vocal tract to produce normal formant patterns under perturbed conditions.
    Story BH
    J Acoust Soc Am; 2004 Apr; 115(4):1760-70. PubMed ID: 15101654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vivo nuclear magnetic resonance tomography measurement of vocal cord temperature during phonation].
    Klingholz F; Reiman V; Vogel T
    Folia Phoniatr (Basel); 1991; 43(4):171-6. PubMed ID: 1769626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formant frequency characteristics of elderly speakers in contextual speech.
    Rastatter MP; McGuire RA; Kalinowski J; Stuart A
    Folia Phoniatr Logop; 1997; 49(1):1-8. PubMed ID: 9097490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.