These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9671263)

  • 1. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity.
    Quinn KJ; Didier AJ; Baker JF; Peterson BW
    Brain Res Bull; 1998 Jul; 46(4):333-46. PubMed ID: 9671263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):928-53. PubMed ID: 7983547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning.
    Blazquez PM; Hirata Y; Highstein SM
    J Neurophysiol; 2006 Mar; 95(3):1812-25. PubMed ID: 16319196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex.
    Raymond JL; Lisberger SG
    Learn Mem; 1997; 3(6):503-18. PubMed ID: 11536919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus.
    Lisberger SG; Pavelko TA; Bronte-Stewart HM; Stone LS
    J Neurophysiol; 1994 Aug; 72(2):954-73. PubMed ID: 7983548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to understanding adaptive visual-vestibular interactions in the central nervous system.
    Galiana HL
    J Neurophysiol; 1986 Feb; 55(2):349-74. PubMed ID: 3081692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells.
    Hirata Y; Highstein SM
    J Neurophysiol; 2001 May; 85(5):2267-88. PubMed ID: 11353040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar role in adaptation of the goldfish vestibuloocular reflex.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1994 Sep; 72(3):1383-94. PubMed ID: 7807219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of the vertical VOR: a system identification approach to localizing the adaptive sites.
    Hirata Y; Highstein SM
    Ann N Y Acad Sci; 2002 Dec; 978():480-95. PubMed ID: 12582075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar motor learning: when is cortical plasticity not enough?
    Porrill J; Dean P
    PLoS Comput Biol; 2007 Oct; 3(10):1935-50. PubMed ID: 17967048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologic basis for motor learning in the vestibulo-ocular reflex.
    Lisberger SG
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):43-8. PubMed ID: 9674513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals.
    Partsalis AM; Zhang Y; Highstein SM
    J Neurophysiol; 1995 Feb; 73(2):632-50. PubMed ID: 7760123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD.
    Faulstich M; van Alphen AM; Luo C; du Lac S; De Zeeuw CI
    J Neurophysiol; 2006 Sep; 96(3):1187-95. PubMed ID: 16723418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons.
    Cullen KE; McCrea RA
    J Neurophysiol; 1993 Aug; 70(2):828-43. PubMed ID: 8410175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning in a simple motor system.
    Broussard DM; Kassardjian CD
    Learn Mem; 2004; 11(2):127-36. PubMed ID: 15054127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1992 Dec; 68(6):2003-15. PubMed ID: 1491254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.