BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9671279)

  • 1. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study.
    Ubink R; Tuinhof R; Roubos EW
    J Comp Neurol; 1998 Jul; 397(1):60-8. PubMed ID: 9671279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study.
    Tuinhof R; Artero C; Fasolo A; Franzoni MF; Ten Donkelaar HJ; Wismans PG; Roubos EW
    Neuroscience; 1994 Jul; 61(2):411-20. PubMed ID: 7526268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central control of melanotrope cells of Xenopus laevis.
    Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW
    Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG; Kidane AH; Scheenen WJ; Roubos EW
    Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation.
    Tuinhof R; Laurent FY; Ebbers RG; Smeets WJ; Van Riel MC; Roubos EW
    Neuroscience; 1993 Aug; 55(3):667-75. PubMed ID: 8413929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit.
    Zhang H; Roubos EW; Jenks BG; Scheenen WJ
    Gen Comp Endocrinol; 2006 Jan; 145(2):140-7. PubMed ID: 16214143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis.
    de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW
    Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation.
    Kramer BM; Welting J; Berghs CA; Jenks BG; Roubos EW
    J Comp Neurol; 2001 Apr; 432(3):346-55. PubMed ID: 11246212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-localization of tyrosine hydroxylase, GABA and neuropeptide Y within axon terminals innervating the intermediate lobe of the frog Rana ridibunda.
    Tonon MC; Bosler O; Stoeckel ME; Pelletier G; Tappaz M; Vaudry H
    J Comp Neurol; 1992 May; 319(4):599-605. PubMed ID: 1377715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconnection between orexigenic neuropeptide Y- and anorexigenic alpha-melanocyte stimulating hormone-synthesizing neuronal systems of the human hypothalamus.
    Menyhért J; Wittmann G; Hrabovszky E; Keller E; Liposits Z; Fekete C
    Brain Res; 2006 Mar; 1076(1):101-5. PubMed ID: 16473335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze-substitution immunocytochemical study.
    de Rijk EP; van Strien FJ; Roubos EW
    J Neurosci; 1992 Mar; 12(3):864-71. PubMed ID: 1312137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of tyrosine hydroxylase and neuropeptide tyrosine in mouse sympathetic airway-specific neurons under normal situation and allergic airway inflammation.
    Dinh QT; Groneberg DA; Witt C; Peiser C; Cifuentes LB; Frossard N; Klapp BF; Fischer A
    Clin Exp Allergy; 2004 Dec; 34(12):1934-41. PubMed ID: 15663571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation.
    Kramer BM; Claassen IE; Westphal NJ; Jansen M; Tuinhof R; Jenks BG; Roubos EW
    J Comp Neurol; 2003 Jan; 456(1):73-83. PubMed ID: 12508315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis.
    Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG
    Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-expression of tyrosine hydroxylase, dopamine beta-hydroxylase and neuropeptide Y in the sympathetic neurons projecting to the submandibular gland in the sheep.
    Arciszewski MB; Zacharko A; Lalak R
    Anat Embryol (Berl); 2004 May; 208(2):161-7. PubMed ID: 15127299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple control and dynamic response of the Xenopus melanotrope cell.
    Kolk SM; Kramer BM; Cornelisse LN; Scheenen WJ; Jenks BG; Roubos EW
    Comp Biochem Physiol B Biochem Mol Biol; 2002 May; 132(1):257-68. PubMed ID: 11997227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis.
    Leenders HJ; de Koning HP; Ponten SP; Jenks BG; Roubos EW
    Life Sci; 1993; 52(24):1969-75. PubMed ID: 8389412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonergic innervation of the pituitary pars intermedia of xenopus laevis.
    Ubink R; Buzzi M; Cruijsen PM; Tuinhof R; Verhofstad AA; Jenks BG; Roubos EW
    J Neuroendocrinol; 1999 Mar; 11(3):211-9. PubMed ID: 10201817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis.
    De Koning HP; Jenks BG; Roubos EW
    Endocrinology; 1993 Feb; 132(2):674-81. PubMed ID: 8381070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.