These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1314 related articles for article (PubMed ID: 9671304)

  • 1. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins.
    Miesenböck G; De Angelis DA; Rothman JE
    Nature; 1998 Jul; 394(6689):192-5. PubMed ID: 9671304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis.
    Martineau M; Somasundaram A; Grimm JB; Gruber TD; Choquet D; Taraska JW; Lavis LD; Perrais D
    Nat Commun; 2017 Nov; 8(1):1412. PubMed ID: 29123102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps.
    Liu A; Huang X; He W; Xue F; Yang Y; Liu J; Chen L; Yuan L; Xu P
    Nat Commun; 2021 Mar; 12(1):1413. PubMed ID: 33658493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of pHluorins for optical measurements of presynaptic activity.
    Sankaranarayanan S; De Angelis D; Rothman JE; Ryan TA
    Biophys J; 2000 Oct; 79(4):2199-208. PubMed ID: 11023924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntaxin-1A is excluded from recycling synaptic vesicles at nerve terminals.
    Mitchell SJ; Ryan TA
    J Neurosci; 2004 May; 24(20):4884-8. PubMed ID: 15152049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Synaptic Vesicle Exocytosis-Endocytosis with pH-Sensitive Fluorescent Proteins.
    Afuwape OA; Kavalali ET
    Methods Mol Biol; 2016; 1474():187-200. PubMed ID: 27515081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis.
    Gandasi NR; Vestö K; Helou M; Yin P; Saras J; Barg S
    PLoS One; 2015; 10(6):e0127801. PubMed ID: 26091288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion.
    Kaether C; Salm T; Glombik M; Almers W; Gerdes HH
    Eur J Cell Biol; 1997 Oct; 74(2):133-42. PubMed ID: 9352218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy.
    Ohara-Imaizumi M; Nakamichi Y; Tanaka T; Katsuta H; Ishida H; Nagamatsu S
    Biochem J; 2002 Apr; 363(Pt 1):73-80. PubMed ID: 11903049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis.
    Cheviet S; Coppola T; Haynes LP; Burgoyne RD; Regazzi R
    Mol Endocrinol; 2004 Jan; 18(1):117-26. PubMed ID: 14593078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release.
    Yuste R; Miller RB; Holthoff K; Zhang S; Miesenböck G
    Methods Enzymol; 2000; 327():522-46. PubMed ID: 11045007
    [No Abstract]   [Full Text] [Related]  

  • 12. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo.
    Poskanzer KE; Marek KW; Sweeney ST; Davis GW
    Nature; 2003 Dec; 426(6966):559-63. PubMed ID: 14634669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera.
    Pouli AE; Emmanouilidou E; Zhao C; Wasmeier C; Hutton JC; Rutter GA
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):193-9. PubMed ID: 9639579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons.
    Ryan TA; Reuter H; Wendland B; Schweizer FE; Tsien RW; Smith SJ
    Neuron; 1993 Oct; 11(4):713-24. PubMed ID: 8398156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayers merge even when exocytosis is transient.
    Taraska JW; Almers W
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8780-5. PubMed ID: 15173592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIRFM and pH-sensitive GFP-probes to evaluate neurotransmitter vesicle dynamics in SH-SY5Y neuroblastoma cells: cell imaging and data analysis.
    Daniele F; Di Cairano ES; Moretti S; Piccoli G; Perego C
    J Vis Exp; 2015 Jan; (95):. PubMed ID: 25741799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPS1 effects on intragranular pH and regulation of BDNF release from secretory granules in hippocampal neurons.
    Eckenstaler R; Lessmann V; Brigadski T
    J Cell Sci; 2016 Apr; 129(7):1378-90. PubMed ID: 26869227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling.
    Cousin MA; Nicholls DG
    J Neurochem; 1997 Nov; 69(5):1927-35. PubMed ID: 9349537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells.
    Saegusa C; Fukuda M; Mikoshiba K
    J Biol Chem; 2002 Jul; 277(27):24499-505. PubMed ID: 12006594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses.
    Li Z; Murthy VN
    Neuron; 2001 Aug; 31(4):593-605. PubMed ID: 11545718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.