These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 9671396)
1. 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Lányi A; Deb D; Seymour RC; Ludes-Meyers JH; Subler MA; Deb S Oncogene; 1998 Jun; 16(24):3169-76. PubMed ID: 9671396 [TBL] [Abstract][Full Text] [Related]
2. Hetero-oligomerization does not compromise 'gain of function' of tumor-derived p53 mutants. Deb D; Scian M; Roth KE; Li W; Keiger J; Chakraborti AS; Deb SP; Deb S Oncogene; 2002 Jan; 21(2):176-89. PubMed ID: 11803461 [TBL] [Abstract][Full Text] [Related]
3. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Lin J; Teresky AK; Levine AJ Oncogene; 1995 Jun; 10(12):2387-90. PubMed ID: 7784087 [TBL] [Abstract][Full Text] [Related]
4. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Inga A; Resnick MA Oncogene; 2001 Jun; 20(26):3409-19. PubMed ID: 11423991 [TBL] [Abstract][Full Text] [Related]
5. Overlapping domains on the p53 protein regulate its transcriptional activation and repression functions. Subler MA; Martin DW; Deb S Oncogene; 1994 May; 9(5):1351-9. PubMed ID: 8152795 [TBL] [Abstract][Full Text] [Related]
6. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Campomenosi P; Monti P; Aprile A; Abbondandolo A; Frebourg T; Gold B; Crook T; Inga A; Resnick MA; Iggo R; Fronza G Oncogene; 2001 Jun; 20(27):3573-9. PubMed ID: 11429705 [TBL] [Abstract][Full Text] [Related]
7. COOH-terminal domain of p53 modulates p53-mediated transcriptional transactivation, cell growth, and apoptosis. Zhou X; Wang XW; Xu L; Hagiwara K; Nagashima M; Wolkowicz R; Zurer I; Rotter V; Harris CC Cancer Res; 1999 Feb; 59(4):843-8. PubMed ID: 10029073 [TBL] [Abstract][Full Text] [Related]
8. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Di Como CJ; Prives C Oncogene; 1998 May; 16(19):2527-39. PubMed ID: 9627118 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of phosphorylation of rat p53 on transactivation of promoters derived from different p53 responsive genes. Lohrum M; Scheidtmann KH Oncogene; 1996 Dec; 13(12):2527-39. PubMed ID: 9000127 [TBL] [Abstract][Full Text] [Related]
10. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393 [TBL] [Abstract][Full Text] [Related]
11. Specific binding of MAR/SAR DNA-elements by mutant p53. Müller BF; Paulsen D; Deppert W Oncogene; 1996 May; 12(9):1941-52. PubMed ID: 8649855 [TBL] [Abstract][Full Text] [Related]
12. Analysis of p53 transactivation through high-affinity binding sites. Chumakov AM; Miller CW; Chen DL; Koeffler HP Oncogene; 1993 Nov; 8(11):3005-11. PubMed ID: 8414502 [TBL] [Abstract][Full Text] [Related]
13. Abrogation of wild-type p53-mediated transactivation is insufficient for mutant p53-induced immortalization of normal human mammary epithelial cells. Cao Y; Gao Q; Wazer DE; Band V Cancer Res; 1997 Dec; 57(24):5584-9. PubMed ID: 9407971 [TBL] [Abstract][Full Text] [Related]
14. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Willis A; Jung EJ; Wakefield T; Chen X Oncogene; 2004 Mar; 23(13):2330-8. PubMed ID: 14743206 [TBL] [Abstract][Full Text] [Related]
15. The requirement of the carboxyl terminus of p53 for DNA binding and transcriptional activation depends on the specific p53 binding DNA element. Zhang W; Guo XY; Deisseroth AB Oncogene; 1994 Sep; 9(9):2513-21. PubMed ID: 8058314 [TBL] [Abstract][Full Text] [Related]
16. Transactivational and DNA binding abilities of endogenous p53 in p53 mutant cell lines. Park DJ; Nakamura H; Chumakov AM; Said JW; Miller CW; Chen DL; Koeffler HP Oncogene; 1994 Jul; 9(7):1899-906. PubMed ID: 8208536 [TBL] [Abstract][Full Text] [Related]
17. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability. Hansen S; Lane DP; Midgley CA J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932 [TBL] [Abstract][Full Text] [Related]
18. Binding sequence-dependent regulation of the human proliferating cell nuclear antigen promoter by p53. Shan B; Morris GF Exp Cell Res; 2005 Apr; 305(1):10-22. PubMed ID: 15777783 [TBL] [Abstract][Full Text] [Related]
19. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Loging WT; Reisman D Cancer Epidemiol Biomarkers Prev; 1999 Nov; 8(11):1011-6. PubMed ID: 10566557 [TBL] [Abstract][Full Text] [Related]
20. The basic carboxy-terminal domain of human p53 is dispensable for both transcriptional regulation and inhibition of tumor cell growth. Pellegata NS; Cajot JF; Stanbridge EJ Oncogene; 1995 Jul; 11(2):337-49. PubMed ID: 7624148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]