BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9671404)

  • 1. Absence of autophosphorylation site Y882 in the p185neu oncogene product correlates with a reduction of transforming potential.
    Zhang HT; O'Rourke DM; Zhao H; Murali R; Mikami Y; Davis JG; Greene MI; Qian X
    Oncogene; 1998 Jun; 16(22):2835-42. PubMed ID: 9671404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the neu oncogene product in cell transformation and normal development.
    Kokai Y; Wada T; Myers JN; Brown VI; Dobashi K; Cohen J; Hamuro J; Weiner DB; Greene MI
    Princess Takamatsu Symp; 1988; 19():45-57. PubMed ID: 2908355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogenic activation of the PDGF beta receptor by the transmembrane domain of p185neu*.
    Petti LM; Irusta PM; DiMaio D
    Oncogene; 1998 Feb; 16(7):843-51. PubMed ID: 9484775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of p185neu kinase activity and cellular transformation by co-expression of a truncated neu protein.
    Qian X; O'Rourke DM; Zhao H; Greene MI
    Oncogene; 1996 Nov; 13(10):2149-57. PubMed ID: 8950982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of p185neu sequences required for monoclonal antibody- or ligand-mediated receptor signal attenuation.
    Qian X; O'Rourke DM; Drebin J; Zhao H; Wang Q; Greene MI
    DNA Cell Biol; 1997 Dec; 16(12):1395-405. PubMed ID: 9428788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkage of tyrosine kinase activity with transforming ability of the p185neu oncoprotein.
    Weiner DB; Kokai Y; Wada T; Cohen JA; Williams WV; Greene MI
    Oncogene; 1989 Oct; 4(10):1175-83. PubMed ID: 2571965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of a naturally occurring EGFR oncoprotein by the p185neu ectodomain: implications for subdomain contributions to receptor assembly.
    O'Rourke DM; Nute EJ; Davis JG; Wu C; Lee A; Murali R; Zhang HT; Qian X; Kao CC; Greene MI
    Oncogene; 1998 Mar; 16(9):1197-207. PubMed ID: 9528862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. erbB-2 autophosphorylation is required for mitogenic action and high-affinity substrate coupling.
    Segatto O; Lonardo F; Helin K; Wexler D; Fazioli F; Rhee SG; Di Fiore PP
    Oncogene; 1992 Jul; 7(7):1339-46. PubMed ID: 1352397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation by oncogenic mutants and ligand-dependent activation of FLT3 wild-type requires the tyrosine residues 589 and 591.
    Vempati S; Reindl C; Wolf U; Kern R; Petropoulos K; Naidu VM; Buske C; Hiddemann W; Kohl TM; Spiekermann K
    Clin Cancer Res; 2008 Jul; 14(14):4437-45. PubMed ID: 18628457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-independent oncogenic transformation by the EGF receptor requires kinase domain catalytic activity.
    Danielsen AJ; Maihle NJ
    Exp Cell Res; 2002 Apr; 275(1):9-16. PubMed ID: 11925101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines.
    Helin K; Velu T; Martin P; Vass WC; Allevato G; Lowy DR; Beguinot L
    Oncogene; 1991 May; 6(5):825-32. PubMed ID: 1646987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation.
    Burke CL; Lemmon MA; Coren BA; Engelman DM; Stern DF
    Oncogene; 1997 Feb; 14(6):687-96. PubMed ID: 9038376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique role of SNT-2/FRS2beta/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways.
    Huang L; Watanabe M; Chikamori M; Kido Y; Yamamoto T; Shibuya M; Gotoh N; Tsuchida N
    Oncogene; 2006 Oct; 25(49):6457-66. PubMed ID: 16702953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin.
    Zhang L; Chang CJ; Bacus SS; Hung MC
    Cancer Res; 1995 Sep; 55(17):3890-6. PubMed ID: 7543819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of autophosphorylation in modulation of erbB-2 transforming function.
    Segatto O; Lonardo F; Pierce JH; Bottaro DP; Di Fiore PP
    New Biol; 1990 Feb; 2(2):187-95. PubMed ID: 1982072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular association and trans-phosphorylation of different neu-kinase forms permit SH2-dependent signaling and oncogenic transformation.
    Qian X; Dougall WC; Fei Z; Greene MI
    Oncogene; 1995 Jan; 10(1):211-9. PubMed ID: 7824275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase.
    Rodrigues GA; Park M
    Oncogene; 1994 Jul; 9(7):2019-27. PubMed ID: 8208547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of mitogenic pathways through kinase-impaired mutants of the epidermal growth factor receptor.
    Ewald JA; Coker KJ; Price JO; Staros JV; Guyer CA
    Exp Cell Res; 2001 Aug; 268(2):262-73. PubMed ID: 11478852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grb2 regulation of the actin-based cytoskeleton is required for ligand-independent EGF receptor-mediated oncogenesis.
    Boerner JL; Danielsen AJ; Lovejoy CA; Wang Z; Juneja SC; Faupel-Badger JM; Darce JR; Maihle NJ
    Oncogene; 2003 Oct; 22(43):6679-89. PubMed ID: 14555981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells.
    Lee LT; Huang YT; Hwang JJ; Lee PP; Ke FC; Nair MP; Kanadaswam C; Lee MT
    Anticancer Res; 2002; 22(3):1615-27. PubMed ID: 12168845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.