These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9671469)

  • 21. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
    Williams GM; Surtees JA
    Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
    Callahan JL; Andrews KJ; Zakian VA; Freudenreich CH
    Mol Cell Biol; 2003 Nov; 23(21):7849-60. PubMed ID: 14560028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absence of MutSĪ² leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex.
    Richard GF; Goellner GM; McMurray CT; Haber JE
    EMBO J; 2000 May; 19(10):2381-90. PubMed ID: 10811629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27.
    Parenteau J; Wellinger RJ
    Mol Cell Biol; 1999 Jun; 19(6):4143-52. PubMed ID: 10330154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism.
    White PJ; Borts RH; Hirst MC
    Mol Cell Biol; 1999 Aug; 19(8):5675-84. PubMed ID: 10409756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meiotic contraction of CAG repeats in Saccharomyces cerevisiae.
    Arai N; Akiyama R; Niimi N; Nakatsubo H; Inoue T
    Genes Genet Syst; 1999 Aug; 74(4):159-67. PubMed ID: 10650843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae.
    Rolfsmeier ML; Lahue RS
    Mol Cell Biol; 2000 Jan; 20(1):173-80. PubMed ID: 10594019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome.
    Freudenreich CH; Stavenhagen JB; Zakian VA
    Mol Cell Biol; 1997 Apr; 17(4):2090-8. PubMed ID: 9121457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae.
    Polleys EJ; Freudenreich CH
    Methods Mol Biol; 2018; 1672():403-419. PubMed ID: 29043639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae.
    Dixon MJ; Lahue RS
    Nucleic Acids Res; 2004; 32(4):1289-97. PubMed ID: 14982954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replication and expansion of trinucleotide repeats in yeast.
    Pelletier R; Krasilnikova MM; Samadashwily GM; Lahue R; Mirkin SM
    Mol Cell Biol; 2003 Feb; 23(4):1349-57. PubMed ID: 12556494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
    Liu Y; Zhang H; Veeraraghavan J; Bambara RA; Freudenreich CH
    Mol Cell Biol; 2004 May; 24(9):4049-64. PubMed ID: 15082797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes.
    Sia EA; Kokoska RJ; Dominska M; Greenwell P; Petes TD
    Mol Cell Biol; 1997 May; 17(5):2851-8. PubMed ID: 9111357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast.
    Rolfsmeier ML; Dixon MJ; Lahue RS
    Mol Cell; 2000 Dec; 6(6):1501-7. PubMed ID: 11163222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
    Bhattacharyya S; Lahue RS
    Mol Cell Biol; 2004 Sep; 24(17):7324-30. PubMed ID: 15314145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.