These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9671502)

  • 1. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
    Saint-Jean AP; Phillips KR; Creighton DJ; Stone MJ
    Biochemistry; 1998 Jul; 37(29):10345-53. PubMed ID: 9671502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
    Cameron AD; Olin B; Ridderström M; Mannervik B; Jones TA
    EMBO J; 1997 Jun; 16(12):3386-95. PubMed ID: 9218781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I.
    Su Z; Sukdeo N; Honek JF
    Biochemistry; 2008 Dec; 47(50):13232-41. PubMed ID: 19053281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D domain swapping, protein oligomerization, and amyloid formation.
    Jaskólski M
    Acta Biochim Pol; 2001; 48(4):807-27. PubMed ID: 11995994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion.
    Iozef R; Rahlfs S; Chang T; Schirmer H; Becker K
    FEBS Lett; 2003 Nov; 554(3):284-8. PubMed ID: 14623080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin.
    Sue SC; Lee WT; Tien SC; Lee SC; Yu JG; Wu WJ; Wu WG; Huang TH
    J Mol Biol; 2007 Mar; 367(2):456-72. PubMed ID: 17270212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity.
    Campos-Bermudez VA; Leite NR; Krog R; Costa-Filho AJ; Soncini FC; Oliva G; Vila AJ
    Biochemistry; 2007 Oct; 46(39):11069-79. PubMed ID: 17764159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of glyoxalase I from soybean.
    Skipsey M; Andrews CJ; Townson JK; Jepson I; Edwards R
    Arch Biochem Biophys; 2000 Feb; 374(2):261-8. PubMed ID: 10666306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element.
    Limacher A; Kloer DP; Flückiger S; Folkers G; Crameri R; Scapozza L
    Structure; 2006 Feb; 14(2):185-95. PubMed ID: 16472738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and energy landscape of domain swapping in the B1 domain of protein G.
    Malevanets A; Sirota FL; Wodak SJ
    J Mol Biol; 2008 Sep; 382(1):223-35. PubMed ID: 18588900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of backbone dynamics of monomeric and domain-swapped stefin A.
    Japelj B; Waltho JP; Jerala R
    Proteins; 2004 Feb; 54(3):500-12. PubMed ID: 14747998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts.
    Akoachere M; Iozef R; Rahlfs S; Deponte M; Mannervik B; Creighton DJ; Schirmer H; Becker K
    Biol Chem; 2005 Jan; 386(1):41-52. PubMed ID: 15843146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein.
    Mateu MG
    J Mol Biol; 2002 Apr; 318(2):519-31. PubMed ID: 12051856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and partial characterization of glyoxalase I from bovine brain.
    Lupidi G; Venardi G; Bollettini M; Marmocchi F; Rotilio G
    Prep Biochem Biotechnol; 2001 Aug; 31(3):305-16. PubMed ID: 11513094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of domain swapping to kinetic stability in a thioredoxin mutant.
    Garcia-Pino A; Martinez-Rodriguez S; Wahni K; Wyns L; Loris R; Messens J
    J Mol Biol; 2009 Feb; 385(5):1590-9. PubMed ID: 19071139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions.
    Clugston SL; Barnard JF; Kinach R; Miedema D; Ruman R; Daub E; Honek JF
    Biochemistry; 1998 Jun; 37(24):8754-63. PubMed ID: 9628737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A domain-swapped RNase A dimer with implications for amyloid formation.
    Liu Y; Gotte G; Libonati M; Eisenberg D
    Nat Struct Biol; 2001 Mar; 8(3):211-4. PubMed ID: 11224563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium.
    Vargo MA; Nguyen L; Colman RF
    Biochemistry; 2004 Mar; 43(12):3327-35. PubMed ID: 15035604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.