These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9671520)
21. Role of hydrophobic core on the thermal stability of proteins - molecular dynamics simulations on a single point mutant of Sso7d abstract. Priyakumar UD J Biomol Struct Dyn; 2012; 29(5):961-71. PubMed ID: 22292954 [TBL] [Abstract][Full Text] [Related]
22. Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Agback P; Baumann H; Knapp S; Ladenstein R; Härd T Nat Struct Biol; 1998 Jul; 5(7):579-84. PubMed ID: 9665172 [TBL] [Abstract][Full Text] [Related]
23. Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d. Bedell JL; Edmondson SP; Shriver JW Biochemistry; 2005 Jan; 44(3):915-25. PubMed ID: 15654747 [TBL] [Abstract][Full Text] [Related]
24. Structural determinants responsible for the thermostability of Sso7d and its single point mutants. Consonni R; Arosio I; Recca T; Fusi P; Zetta L Proteins; 2007 May; 67(3):766-75. PubMed ID: 17340638 [No Abstract] [Full Text] [Related]
25. Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d. Priyakumar UD; Ramakrishna S; Nagarjuna KR; Reddy SK J Phys Chem B; 2010 Feb; 114(4):1707-18. PubMed ID: 20055363 [TBL] [Abstract][Full Text] [Related]
26. Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d. Clark AT; Smith K; Muhandiram R; Edmondson SP; Shriver JW J Mol Biol; 2007 Sep; 372(4):992-1008. PubMed ID: 17692336 [TBL] [Abstract][Full Text] [Related]
27. Structural characterization of the functional regions in the archaeal protein Sso7d. Renzone G; Vitale RM; Scaloni A; Rossi M; Amodeo P; Guagliardi A Proteins; 2007 Apr; 67(1):189-97. PubMed ID: 17243156 [TBL] [Abstract][Full Text] [Related]
28. The Sso7d DNA-binding protein from Sulfolobus solfataricus has ribonuclease activity. Shehi E; Serina S; Fumagalli G; Vanoni M; Consonni R; Zetta L; Dehò G; Tortora P; Fusi P FEBS Lett; 2001 May; 497(2-3):131-6. PubMed ID: 11377427 [TBL] [Abstract][Full Text] [Related]
29. Guanidine-induced denaturation of beta-glycosidase from Sulfolobus solfataricus expressed in Escherichia coli. Catanzano F; Graziano G; De Paola B; Barone G; D'Auria S; Rossi M; Nucci R Biochemistry; 1998 Oct; 37(41):14484-90. PubMed ID: 9772176 [TBL] [Abstract][Full Text] [Related]
30. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472 [TBL] [Abstract][Full Text] [Related]
31. Tryptophan to phenylalanine substitutions allow differentiation of short- and long-range conformational changes during denaturation of goat alpha-lactalbumin. Vanhooren A; Chedad A; Farkas V; Majer Z; Joniau M; Van Dael H; Hanssens I Proteins; 2005 Jul; 60(1):118-30. PubMed ID: 15861407 [TBL] [Abstract][Full Text] [Related]
32. Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site. Rocha R; Leal SS; Teixeira VH; Regalla M; Huber H; Baptista AM; Soares CM; Gomes CM Biochemistry; 2006 Aug; 45(34):10376-84. PubMed ID: 16922514 [TBL] [Abstract][Full Text] [Related]
33. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds. Shinkai A; Sekine S; Urushibata A; Terada T; Shirouzu M; Yokoyama S J Mol Biol; 2007 Oct; 372(5):1293-304. PubMed ID: 17720190 [TBL] [Abstract][Full Text] [Related]
34. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus. Weininger U; Zeeb M; Neumann P; Löw C; Stubbs MT; Lipps G; Balbach J Biochemistry; 2009 Oct; 48(42):10030-7. PubMed ID: 19788170 [TBL] [Abstract][Full Text] [Related]
35. A stabilizing alpha/beta-hydrophobic core greatly contributes to hyperthermostability of archaeal [P62A]Ssh10b. Fang X; Cui Q; Tong Y; Feng Y; Shan L; Huang L; Wang J Biochemistry; 2008 Oct; 47(43):11212-21. PubMed ID: 18821773 [TBL] [Abstract][Full Text] [Related]
36. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312 [TBL] [Abstract][Full Text] [Related]
37. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. Zhao N; Schmitt MA; Fisk JD FEBS J; 2016 Apr; 283(7):1351-67. PubMed ID: 26835881 [TBL] [Abstract][Full Text] [Related]
38. Solution structure, stability, and nucleic acid binding of the hyperthermophile protein Sso10b2. Biyani K; Kahsai MA; Clark AT; Armstrong TL; Edmondson SP; Shriver JW Biochemistry; 2005 Nov; 44(43):14217-30. PubMed ID: 16245938 [TBL] [Abstract][Full Text] [Related]
39. Shape and energetics of a cavity in c-Myb probed by natural and non-natural amino acid mutations. Morii H; Uedaira H; Ogata K; Ishii S; Sarai A J Mol Biol; 1999 Oct; 292(4):909-20. PubMed ID: 10525414 [TBL] [Abstract][Full Text] [Related]
40. NMR solution structure of the archaebacterial chromosomal protein MC1 reveals a new protein fold. Paquet F; Culard F; Barbault F; Maurizot JC; Lancelot G Biochemistry; 2004 Nov; 43(47):14971-8. PubMed ID: 15554704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]