These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9671520)
41. NMR studies on the surface accessibility of the archaeal protein Sso7d by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. Bernini A; Venditti V; Spiga O; Ciutti A; Prischi F; Consonni R; Zetta L; Arosio I; Fusi P; Guagliardi A; Niccolai N Biophys Chem; 2008 Oct; 137(2-3):71-5. PubMed ID: 18678440 [TBL] [Abstract][Full Text] [Related]
42. Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein. Guagliardi A; Napoli A; Rossi M; Ciaramella M J Mol Biol; 1997 Apr; 267(4):841-8. PubMed ID: 9135116 [TBL] [Abstract][Full Text] [Related]
43. Contributions of amino acid side chains to the kinetics and thermodynamics of the bivalent binding of protein L to Ig kappa light chain. Svensson HG; Wedemeyer WJ; Ekstrom JL; Callender DR; Kortemme T; Kim DE; Sjöbring U; Baker D Biochemistry; 2004 Mar; 43(9):2445-57. PubMed ID: 14992582 [TBL] [Abstract][Full Text] [Related]
44. The Sso7d protein of Sulfolobus solfataricus: in vitro relationship among different activities. Guagliardi A; Cerchia L; Rossi M Archaea; 2002 Sep; 1(2):87-93. PubMed ID: 15803646 [TBL] [Abstract][Full Text] [Related]
45. Temperature range of thermodynamic stability for the native state of reversible two-state proteins. Kumar S; Tsai CJ; Nussinov R Biochemistry; 2003 May; 42(17):4864-73. PubMed ID: 12718527 [TBL] [Abstract][Full Text] [Related]
46. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease. Schwehm JM; Kristyanne ES; Biggers CC; Stites WE Biochemistry; 1998 May; 37(19):6939-48. PubMed ID: 9578580 [TBL] [Abstract][Full Text] [Related]
47. Partial B-to-A DNA transition upon minor groove binding of protein Sac7d monitored by Raman spectroscopy. Dostál L; Chen CY; Wang AH; Welfle H Biochemistry; 2004 Aug; 43(30):9600-9. PubMed ID: 15274614 [TBL] [Abstract][Full Text] [Related]
48. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. Peters WB; Edmondson SP; Shriver JW J Mol Biol; 2004 Oct; 343(2):339-60. PubMed ID: 15451665 [TBL] [Abstract][Full Text] [Related]
49. The chromosomal protein sso7d of the crenarchaeon Sulfolobus solfataricus rescues aggregated proteins in an ATP hydrolysis-dependent manner. Guagliardi A; Cerchia L; Moracci M; Rossi M J Biol Chem; 2000 Oct; 275(41):31813-8. PubMed ID: 10908560 [TBL] [Abstract][Full Text] [Related]
50. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth. López-García P; Knapp S; Ladenstein R; Forterre P Nucleic Acids Res; 1998 May; 26(10):2322-8. PubMed ID: 9580681 [TBL] [Abstract][Full Text] [Related]
51. Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius. Backmann J; Schäfer G; Wyns L; Bönisch H J Mol Biol; 1998 Dec; 284(3):817-33. PubMed ID: 9826518 [TBL] [Abstract][Full Text] [Related]
52. Thermodynamic analysis of the single-stranded DNA binding activity of the archaeal replication protein A (RPA) from Sulfolobus solfataricus. Kernchen U; Lipps G Biochemistry; 2006 Jan; 45(2):594-603. PubMed ID: 16401088 [TBL] [Abstract][Full Text] [Related]
53. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study. Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746 [TBL] [Abstract][Full Text] [Related]
54. Two-dimensional IR correlation spectroscopy of mutants of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus identifies the mechanism of quaternary structure stabilization and unravels the sequence of thermal unfolding events. Ausili A; Di Lauro B; Cobucci-Ponzano B; Bertoli E; Scirè A; Rossi M; Tanfani F; Moracci M Biochem J; 2004 Nov; 384(Pt 1):69-78. PubMed ID: 15283674 [TBL] [Abstract][Full Text] [Related]
55. Contribution of water molecules in the interior of a protein to the conformational stability. Takano K; Funahashi J; Yamagata Y; Fujii S; Yutani K J Mol Biol; 1997 Nov; 274(1):132-42. PubMed ID: 9398521 [TBL] [Abstract][Full Text] [Related]
56. Stability and flexibility in the structure of the hyperthermophile DNA-binding protein Sac7d. Kahsai MA; Martin E; Edmondson SP; Shriver JW Biochemistry; 2005 Oct; 44(41):13500-9. PubMed ID: 16216073 [TBL] [Abstract][Full Text] [Related]
57. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Baumann H; Knapp S; Lundbäck T; Ladenstein R; Härd T Nat Struct Biol; 1994 Nov; 1(11):808-19. PubMed ID: 7634092 [TBL] [Abstract][Full Text] [Related]
58. Thermodynamic effects of proline introduction on protein stability. Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035 [TBL] [Abstract][Full Text] [Related]
59. Asn249Tyr substitution at the coenzyme binding domain activates Sulfolobus solfataricus alcohol dehydrogenase and increases its thermal stability. Giordano A; Cannio R; La Cara F; Bartolucci S; Rossi M; Raia CA Biochemistry; 1999 Mar; 38(10):3043-54. PubMed ID: 10074357 [TBL] [Abstract][Full Text] [Related]
60. Detection of photoinduced electron transfer from Sso7d to DNA. Tashiro R; Wang AH; Sugiyama H Nucleic Acids Symp Ser (Oxf); 2006; (50):149-50. PubMed ID: 17150861 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]