BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 9671734)

  • 21. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resilient circadian oscillator revealed in individual cyanobacteria.
    Mihalcescu I; Hsing W; Leibler S
    Nature; 2004 Jul; 430(6995):81-5. PubMed ID: 15229601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods: comparing the mutual inhibition and substrate depletion hypotheses.
    Roussel MR; Gonze D; Goldbeter A
    J Theor Biol; 2000 Jul; 205(2):321-40. PubMed ID: 10873441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC.
    Xu Y; Mori T; Johnson CH
    EMBO J; 2003 May; 22(9):2117-26. PubMed ID: 12727878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting.
    Xu Y; Mori T; Johnson CH
    EMBO J; 2000 Jul; 19(13):3349-57. PubMed ID: 10880447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
    Brunner M; Schafmeier T
    Genes Dev; 2006 May; 20(9):1061-74. PubMed ID: 16651653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria.
    Kondo T; Strayer CA; Kulkarni RD; Taylor W; Ishiura M; Golden SS; Johnson CH
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5672-6. PubMed ID: 8516317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lifespan is unaffected by size and direction of daily phase shifts in Nasonia, a hymenopteran insect with strong circadian light resetting.
    Floessner TSE; Boekelman FE; Druiven SJM; de Jong M; Rigter PMF; Beersma DGM; Hut RA
    J Insect Physiol; 2019; 117():103896. PubMed ID: 31194973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The circadian clock of cyanobacteria.
    Kondo T; Ishiura M
    Bioessays; 2000 Jan; 22(1):10-5. PubMed ID: 10649285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure, function, and mechanism of the core circadian clock in cyanobacteria.
    Swan JA; Golden SS; LiWang A; Partch CL
    J Biol Chem; 2018 Apr; 293(14):5026-5034. PubMed ID: 29440392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian clocks in prokaryotes.
    Johnson CH; Golden SS; Ishiura M; Kondo T
    Mol Microbiol; 1996 Jul; 21(1):5-11. PubMed ID: 8843429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orchestration of Circadian Timing by Macromolecular Protein Assemblies.
    Partch CL
    J Mol Biol; 2020 May; 432(12):3426-3448. PubMed ID: 31945377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian timing mechanism in the prokaryotic clock system of cyanobacteria.
    Iwasaki H; Kondo T
    J Biol Rhythms; 2004 Oct; 19(5):436-44. PubMed ID: 15534323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
    Kim YI; Vinyard DJ; Ananyev GM; Dismukes GC; Golden SS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17765-9. PubMed ID: 23071342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The brown clock: circadian rhythms in stramenopiles.
    Farré EM
    Physiol Plant; 2020 Jul; 169(3):430-441. PubMed ID: 32274814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.
    Shindey R; Varma V; Nikhil KL; Sharma VK
    Chronobiol Int; 2017; 34(5):537-550. PubMed ID: 28156168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolution of the cyanobacterial posttranslational clock from a primitive "phoscillator".
    Simons MJ
    J Biol Rhythms; 2009 Jun; 24(3):175-82. PubMed ID: 19465694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution.
    Jabbur ML; Dani C; Spoelstra K; Dodd AN; Johnson CH
    J Biol Rhythms; 2024 Apr; 39(2):115-134. PubMed ID: 38185853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles.
    Agrawal P; Hardin PE
    J Neurosci; 2016 Mar; 36(13):3860-70. PubMed ID: 27030770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics.
    Guerreiro AC; Penning R; Raaijmakers LM; Axman IM; Heck AJ; Altelaar AF
    J Proteomics; 2016 Jun; 142():33-44. PubMed ID: 27142972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.