These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9671781)

  • 1. Systematic identification of essential genes by in vitro mariner mutagenesis.
    Akerley BJ; Rubin EJ; Camilli A; Lampe DJ; Robertson HM; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8927-32. PubMed ID: 9671781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of essential genes in Haemophilus influenzae.
    Wong SM; Akerley BJ
    Methods Mol Biol; 2008; 416():27-44. PubMed ID: 18392959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa.
    Wong SM; Mekalanos JJ
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10191-6. PubMed ID: 10963681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae.
    Akerley BJ; Rubin EJ; Novick VL; Amaya K; Judson N; Mekalanos JJ
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):966-71. PubMed ID: 11805338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome scanning in Haemophilus influenzae for identification of essential genes.
    Reich KA; Chovan L; Hessler P
    J Bacteriol; 1999 Aug; 181(16):4961-8. PubMed ID: 10438768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria.
    Freiberg C; Wieland B; Spaltmann F; Ehlert K; Brötz H; Labischinski H
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):483-9. PubMed ID: 11361082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae.
    Bijlsma JJ; Burghout P; Kloosterman TG; Bootsma HJ; de Jong A; Hermans PW; Kuipers OP
    Appl Environ Microbiol; 2007 Mar; 73(5):1514-24. PubMed ID: 17261526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in silico evaluation of Tn916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd.
    Hosking SL; Deadman ME; Moxon ER; Peden JF; Saunders NJ; High NJ
    Microbiology (Reading); 1998 Sep; 144 ( Pt 9)():2525-2530. PubMed ID: 9782500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characterization of a mariner transposon pKKma].
    Zhang C; Shi L; Yu Y; Key H
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):366-71. PubMed ID: 26065279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature Tagged Mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival.
    Herbert MA; Hayes S; Deadman ME; Tang CM; Hood DW; Moxon ER
    Microb Pathog; 2002 Nov; 33(5):211-23. PubMed ID: 12473436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of essential and nonessential genes in the Haemophilus influenzae Rd cell wall biosynthetic pathway by targeted gene disruption.
    Trepod CM; Mott JE
    Antimicrob Agents Chemother; 2005 Feb; 49(2):824-6. PubMed ID: 15673779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic characterization of the capsulation locus of Haemophilus influenzae serotype e.
    Giufrè M; Cardines R; Mastrantonio P; Cerquetti M
    J Clin Microbiol; 2010 Apr; 48(4):1404-7. PubMed ID: 20107095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function.
    Zalacain M; Biswas S; Ingraham KA; Ambrad J; Bryant A; Chalker AF; Iordanescu S; Fan J; Fan F; Lunsford RD; O'Dwyer K; Palmer LM; So C; Sylvester D; Volker C; Warren P; McDevitt D; Brown JR; Holmes DJ; Burnham MK
    J Mol Microbiol Biotechnol; 2003; 6(2):109-26. PubMed ID: 15044829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of transposon Tn916 DNA into Haemophilus influenzae and Haemophilus parainfluenzae.
    Kauc L; Goodgal SH
    J Bacteriol; 1989 Dec; 171(12):6625-8. PubMed ID: 2556369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The new insertion sequence IS1167 of Streptococcus pneumoniae is related to IS1096 and a family of IS elements occurring widely among gram-positive bacteria.
    Zhou L; Morrison DA
    Dev Biol Stand; 1995; 85():77-81. PubMed ID: 8586248
    [No Abstract]   [Full Text] [Related]  

  • 16. Lack of expression of the global regulator OxyR in Haemophilus influenzae has a profound effect on growth phenotype.
    Maciver I; Hansen EJ
    Infect Immun; 1996 Nov; 64(11):4618-29. PubMed ID: 8890216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence analysis of integrative conjugative element Tn5253 of Streptococcus pneumoniae.
    Iannelli F; Santoro F; Oggioni MR; Pozzi G
    Antimicrob Agents Chemother; 2014; 58(2):1235-9. PubMed ID: 24295984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification a novel gene required for lipopolysaccharide biosynthesis by Haemophilus influenzae RM7004, using transposon Tn916 mutagenesis.
    High NJ; Deadman ME; Hood DW; Moxon ER
    FEMS Microbiol Lett; 1996 Dec; 145(3):325-31. PubMed ID: 8978086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252.
    Sampath J; Vijayakumar MN
    Plasmid; 1998; 39(1):63-76. PubMed ID: 9473447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput insertion tracking by deep sequencing for the analysis of bacterial pathogens.
    Wong SM; Gawronski JD; Lapointe D; Akerley BJ
    Methods Mol Biol; 2011; 733():209-22. PubMed ID: 21431773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.