These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9671924)

  • 1. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections.
    Silva MJ; Keaveny TM; Hayes WC
    J Orthop Res; 1998 May; 16(3):300-8. PubMed ID: 9671924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone.
    Kopperdahl DL; Morgan EF; Keaveny TM
    J Orthop Res; 2002 Jul; 20(4):801-5. PubMed ID: 12168670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture.
    Sran MM; Boyd SK; Cooper DM; Khan KM; Zernicke RF; Oxland TR
    Bone; 2007 Mar; 40(3):751-7. PubMed ID: 17134950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength.
    Hulme PA; Boyd SK; Ferguson SJ
    Bone; 2007 Dec; 41(6):946-57. PubMed ID: 17913613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Colles' fracture load in human radius using cohesive finite element modeling.
    Ural A
    J Biomech; 2009 Jan; 42(1):22-8. PubMed ID: 19056085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties.
    Harrison NM; McDonnell PF; O'Mahoney DC; Kennedy OD; O'Brien FJ; McHugh PE
    J Biomech; 2008 Aug; 41(11):2589-96. PubMed ID: 18602110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behavior of thoracic trabecular bone during flexion.
    Toh E; Yerby SA; Bay BK; McLain RF; Mochida J
    Tokai J Exp Clin Med; 2005 Sep; 30(3):163-70. PubMed ID: 16285607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear finite element model predicts vertebral bone strength and fracture site.
    Imai K; Ohnishi I; Bessho M; Nakamura K
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1789-94. PubMed ID: 16845352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method.
    Giambini H; Qin X; Dragomir-Daescu D; An KN; Nassr A
    Med Biol Eng Comput; 2016 Apr; 54(4):583-93. PubMed ID: 26239163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial.
    Mawatari T; Miura H; Hamai S; Shuto T; Nakashima Y; Okazaki K; Kinukawa N; Sakai S; Hoffmann PF; Iwamoto Y; Keaveny TM
    Arthritis Rheum; 2008 Nov; 58(11):3340-9. PubMed ID: 18975334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions.
    Marinescu R; Daegling DJ; Rapoff AJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):300-9. PubMed ID: 15747352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femoral structure and stiffness in patients with femoral neck fracture.
    Cody DD; Hou FJ; Divine GW; Fyhrie DP
    J Orthop Res; 2000 May; 18(3):443-8. PubMed ID: 10937632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case-specific non-linear finite element models to predict failure behavior in two functional spinal units.
    Groenen KHJ; Bitter T; van Veluwen TCG; van der Linden YM; Verdonschot N; Tanck E; Janssen D
    J Orthop Res; 2018 Dec; 36(12):3208-3218. PubMed ID: 30058158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis.
    Hong J; Cabe GD; Tedrow JR; Hipp JA; Snyder BD
    J Orthop Res; 2004 May; 22(3):479-86. PubMed ID: 15099624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.