BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 9671936)

  • 1. Experimental testing of a DEXA-derived curved beam model of the proximal femur.
    Beck TJ; Mourtada FA; Ruff CB; Scott WW; Kao G
    J Orthop Res; 1998 May; 16(3):394-8. PubMed ID: 9671936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the fracture load of whole proximal femur specimens by topological analysis of the mineral distribution in DXA-scan images.
    Boehm HF; Horng A; Notohamiprodjo M; Eckstein F; Burklein D; Panteleon A; Lutz J; Reiser M
    Bone; 2008 Nov; 43(5):826-31. PubMed ID: 18723137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved beam model of the proximal femur for estimating stress using dual-energy X-ray absorptiometry derived structural geometry.
    Mourtada FA; Beck TJ; Hauser DL; Ruff CB; Bao G
    J Orthop Res; 1996 May; 14(3):483-92. PubMed ID: 8676262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur.
    Eckstein F; Wunderer C; Boehm H; Kuhn V; Priemel M; Link TM; Lochmüller EM
    J Bone Miner Res; 2004 Mar; 19(3):379-85. PubMed ID: 15040825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model.
    Zhang G; Qin L; Shi Y; Leung K
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):729-35. PubMed ID: 15963616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of femoral-neck structure using finite element model and bone mineral density using dual-energy X-ray absorptiometry.
    Qian JG; Song YW; Tang X; Zhang S
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):47-52. PubMed ID: 18980785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: a biomechanical comparative study.
    Ropars M; Mitton D; Skalli W
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1012-7. PubMed ID: 18579266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-energy x-ray absorptiometry measurement and accuracy of bone mineral after unilateral total hip arthroplasty.
    Bloebaum RD; Liau DW; Lester DK; Rosenbaum TG
    J Arthroplasty; 2006 Jun; 21(4):612-22. PubMed ID: 16781417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on the femur of a new hip fracture preventive system using dropped-weight impact testing.
    Okuizumi H; Harada A; Iwata H; Konishi N
    J Bone Miner Res; 1998 Dec; 13(12):1940-5. PubMed ID: 9844113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures.
    de Bakker PM; Manske SL; Ebacher V; Oxland TR; Cripton PA; Guy P
    J Biomech; 2009 Aug; 42(12):1917-25. PubMed ID: 19524929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total lymphocyte count and femoral bone mineral density in postmenopausal women.
    Di Monaco M; Vallero F; Di Monaco R; Mautino F; Cavanna A
    J Bone Miner Metab; 2004; 22(1):58-63. PubMed ID: 14691689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in femur stress after hip resurfacing arthroplasty: response to physiological loads.
    Little JP; Taddei F; Viceconti M; Murray DW; Gill HS
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):440-8. PubMed ID: 17257719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of bone mineral density of lumbar spine, hip, femoral neck and Ward's triangle by forearm bone mineral density.
    Trivitayaratana W; Trivitayaratana P; Kongkiatikul S
    J Med Assoc Thai; 2001 Mar; 84(3):390-6. PubMed ID: 11460941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femoral structure and stiffness in patients with femoral neck fracture.
    Cody DD; Hou FJ; Divine GW; Fyhrie DP
    J Orthop Res; 2000 May; 18(3):443-8. PubMed ID: 10937632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DXA predictions of human femoral mechanical properties depend on the load configuration.
    Dall'Ara E; Luisier B; Schmidt R; Pretterklieber M; Kainberger F; Zysset P; Pahr D
    Med Eng Phys; 2013 Nov; 35(11):1564-72; discussion 1564. PubMed ID: 23684578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical strength of the femur following resurfacing and conventional total hip replacement procedures.
    Markolf KL; Amstutz HC
    Clin Orthop Relat Res; 1980; (147):170-80. PubMed ID: 7371289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting femoral neck strength from bone mineral data. A structural approach.
    Beck TJ; Ruff CB; Warden KE; Scott WW; Rao GU
    Invest Radiol; 1990 Jan; 25(1):6-18. PubMed ID: 2298552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of atypical fractures and cortical stress lesions in the femur: implications on pathophysiology.
    Koh JS; Goh SK; Png MA; Ng AC; Howe TS
    Singapore Med J; 2011 Feb; 52(2):77-80. PubMed ID: 21373731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.