These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9672024)

  • 1. A canine model of acute hydrocephalus with MR correlation.
    Vullo T; Manzo R; Gomez DG; Deck MD; Cahill PT
    AJNR Am J Neuroradiol; 1998; 19(6):1123-5. PubMed ID: 9672024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging.
    Deo-Narine V; Gomez DG; Vullo T; Manzo RP; Zimmerman RD; Deck MD; Cahill PT
    Invest Radiol; 1994 Mar; 29(3):287-93. PubMed ID: 8175302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communicating hydrocephalus. Cisternographic and neuropathologic studies.
    Price DL; James AE; Sperber E; Strecker EP
    Arch Neurol; 1976 Jan; 33(1):15-20. PubMed ID: 1247391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative volumetric determinations on MR tomograms in communicating hydrocephalus].
    Langkowski JH; Palmié SG; von Koschitzky H; Imme M; Maas R; Schmidt KH; Heller M
    Rofo; 1989 Feb; 150(2):125-9. PubMed ID: 2537503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cine MR CSF flow study in hydrocephalus: what are the valuable parameters?
    Kim MH; Shin KM; Song JH
    Acta Neurochir Suppl; 1998; 71():343-6. PubMed ID: 9779225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging of silastic-induced canine hydrocephalus.
    Drake JM; Potts DG; Lemaire C
    Surg Neurol; 1989 Jan; 31(1):28-40. PubMed ID: 2645671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M; Oresković D; Bozić B; Vukić M; Butković V; Bulat M
    Neuroscience; 2009 Feb; 158(4):1397-405. PubMed ID: 19111908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral energy metabolism in experimental canine hydrocephalus.
    Tamaki N; Yasuda M; Matsumoto S; Yamamoto T; Iriguchi N
    Childs Nerv Syst; 1990 May; 6(3):172-8. PubMed ID: 2357715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of intraventricular pressure change in a canine model of hydrocephalus: its relationship to sagittal sinus elastance.
    McCormick JM; Yamada K; Rekate HL; Miyake H
    Pediatr Neurosurg; 1992; 18(3):127-33. PubMed ID: 1457371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation between CSF pressure and ventricular dilatation in hydrocephalic HTx rats.
    Jones HC; Lopman BA
    Eur J Pediatr Surg; 1998 Dec; 8 Suppl 1():55-8. PubMed ID: 9926328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventricular wall granulations and draining of cerebrospinal fluid in chronic giant hydrocephalus.
    Masdeu JC; Pascual B; Bressi F; Casale M; Prieto E; Arbizu J; Fernández-Seara MA
    Arch Neurol; 2009 Feb; 66(2):262-7. PubMed ID: 19204166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreases in ventricular volume correlate with decreases in ventricular pressure in idiopathic normal pressure hydrocephalus patients who experienced clinical improvement after implantation with adjustable valve shunts.
    McConnell KA; Zou KH; Chabrerie AV; Bailey NO; Black PM
    Neurosurgery; 2004 Sep; 55(3):582-92; discussion 592-3. PubMed ID: 15335425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysis of intraventricular blood clot with urokinase in a canine model: Part 3. Effects of intraventricular urokinase on clot lysis and posthemorrhagic hydrocephalus.
    Pang D; Sclabassi RJ; Horton JA
    Neurosurgery; 1986 Oct; 19(4):553-72. PubMed ID: 3491340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR ventriculography for the study of CSF flow.
    Joseph VB; Raghuram L; Korah IP; Chacko AG
    AJNR Am J Neuroradiol; 2003 Mar; 24(3):373-81. PubMed ID: 12637285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrospinal fluid flow in the normal and hydrocephalic human brain.
    Linninger AA; Xenos M; Zhu DC; Somayaji MR; Kondapalli S; Penn RD
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):291-302. PubMed ID: 17278586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of serial cisternograms and cerebrospinal fluid pressure measurements in experimental communicating hydrocephalus.
    James AE; Strecker EP; Novak G; Burns B
    Neurology; 1973 Nov; 23(11):1226-33. PubMed ID: 4800364
    [No Abstract]   [Full Text] [Related]  

  • 17. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images.
    Bradley WG; Kortman KE; Burgoyne B
    Radiology; 1986 Jun; 159(3):611-6. PubMed ID: 3704142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental hydrocephalus: cerebrospinal fluid dynamics and ventricular distensibility during early stages.
    Drapkin AJ; Sahar A
    Childs Brain; 1978; 4(5):278-88. PubMed ID: 657883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus.
    Mase M; Yamada K; Banno T; Miyachi T; Ohara S; Matsumoto T
    Acta Neurochir Suppl; 1998; 71():350-3. PubMed ID: 9779227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telemetric intraventricular pressure measurements after third ventriculocisternostomy in a patient with noncommunicating hydrocephalus.
    Frim DM; Goumnerova LC
    Neurosurgery; 1997 Dec; 41(6):1425-8; discussion 1428-30. PubMed ID: 9402598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.