These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9672083)

  • 1. Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration.
    Taylor M; Tanner KE; Freeman MA
    J Biomech; 1998 Apr; 31(4):303-10. PubMed ID: 9672083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancellous bone stresses surrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis.
    Taylor M; Tanner KE; Freeman MA; Yettram AL
    Med Eng Phys; 1995 Oct; 17(7):544-50. PubMed ID: 7489128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined RSA and FE study of the implanted proximal tibia: correlation of the post-operative mechanical environment with implant migration.
    Perillo-Marcone A; Ryd L; Johnsson K; Taylor M
    J Biomech; 2004 Aug; 37(8):1205-13. PubMed ID: 15212926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty.
    Brihault J; Navacchia A; Pianigiani S; Labey L; De Corte R; Pascale V; Innocenti B
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2550-9. PubMed ID: 25957612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of tibial component design in total knee arthroplasty.
    Murase K; Crowninshield RD; Pedersen DR; Chang TS
    J Biomech; 1983; 16(1):13-22. PubMed ID: 6833306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis: a comparison of an all-polyethylene tibial implant and its metal-backed equivalent.
    Thompson SM; Yohuno D; Bradley WN; Crocombe AD
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2560-6. PubMed ID: 26694487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of tibial alignment: finite element analysis of tibial malalignment.
    Perillo-Marcone A; Barrett DS; Taylor M
    J Arthroplasty; 2000 Dec; 15(8):1020-7. PubMed ID: 11112199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of model variables and fixation post length effects on stresses around a prosthesis in the proximal tibia.
    Askew MJ; Lewis JL
    J Biomech Eng; 1981 Nov; 103(4):239-45. PubMed ID: 7311489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of tibial component malalignment on bone strain in revision total knee replacement.
    Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative evaluation of tibial component designs of total knee prostheses.
    Lewis JL; Askew MJ; Jaycox DP
    J Bone Joint Surg Am; 1982 Jan; 64(1):129-35. PubMed ID: 7054194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Load transfer with the Austin Moore cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Orthop Res; 1993 Mar; 11(2):272-84. PubMed ID: 8483040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-polyethylene tibial components in distal femur limb-salvage surgery: a finite element analysis based on promising clinical outcomes.
    Tang F; Zhou Y; Zhang W; Min L; Shi R; Luo Y; Duan H; Tu C
    J Orthop Surg Res; 2017 Apr; 12(1):57. PubMed ID: 28376828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximal tibial strain in medial unicompartmental knee replacements: A biomechanical study of implant design.
    Scott CE; Eaton MJ; Nutton RW; Wade FA; Pankaj P; Evans SL
    Bone Joint J; 2013 Oct; 95-B(10):1339-47. PubMed ID: 24078529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of an interference fit on the fixation of porous-coated tibial components in total knee replacement.
    Dawson JM; Bartel DL
    J Bone Joint Surg Am; 1992 Feb; 74(2):233-8. PubMed ID: 1541617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia.
    Cawley DT; Kelly N; Simpkin A; Shannon FJ; McGarry JP
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):390-7. PubMed ID: 22079691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment.
    Ramamurti BS; Orr TE; Bragdon CR; Lowenstein JD; Jasty M; Harris WH
    J Biomed Mater Res; 1997 Aug; 36(2):274-80. PubMed ID: 9261690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Finite-Element Study of Metal Backing and Tibial Resection Depth in a Composite Tibia Following Total Knee Arthroplasty.
    Tokunaga S; Rogge RD; Small SR; Berend ME; Ritter MA
    J Biomech Eng; 2016 Apr; 138(4):041001. PubMed ID: 26810930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain shielding in proximal tibia of stemmed knee prosthesis: experimental study.
    Completo A; Fonseca F; Simões JA
    J Biomech; 2008; 41(3):560-6. PubMed ID: 18036530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.