These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9672711)

  • 21. Energy efficiency of digestible protein, fat and carbohydrate utilisation for growth in rainbow trout and Nile tilapia.
    Schrama JW; Haidar MN; Geurden I; Heinsbroek LTN; Kaushik SJ
    Br J Nutr; 2018 Apr; 119(7):782-791. PubMed ID: 29569541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows.
    Dong LF; Yan T; Ferris CP; McDowell DA
    J Dairy Sci; 2015 Feb; 98(2):1136-44. PubMed ID: 25483199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of net energy value of feeds for growing pigs.
    Noblet J; Fortune H; Shi XS; Dubois S
    J Anim Sci; 1994 Feb; 72(2):344-54. PubMed ID: 8157519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BOARD-INVITED REVIEW: Efficiency of converting digestible energy to metabolizable energy and reevaluation of the California Net Energy System maintenance requirements and equations for predicting dietary net energy values for beef cattle.
    Galyean ML; Cole NA; Tedeschi LO; Branine ME
    J Anim Sci; 2016 Apr; 94(4):1329-41. PubMed ID: 27135993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mammary gland development of dairy heifers fed diets containing increasing levels of metabolisable protein: metabolisable energy.
    Albino RL; Marcondes MI; Akers RM; Detmann E; Carvalho BC; Silva TE
    J Dairy Res; 2015 Feb; 82(1):113-20. PubMed ID: 25592631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigations of energy metabolism in weanling barrows: the interaction of dietary energy concentration and daily feed (energy) intake.
    Oresanya TF; Beaulieu AD; Patience JF
    J Anim Sci; 2008 Feb; 86(2):348-63. PubMed ID: 17998419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Critical considerations of the "Rostock feed evaluation system". Energetic feed evaluation in swine].
    Henkel H
    Z Tierphysiol Tierernahr Futtermittelkd; 1972 Dec; 30(5):233-44. PubMed ID: 4651914
    [No Abstract]   [Full Text] [Related]  

  • 28. Major advances in applied dairy cattle nutrition.
    Eastridge ML
    J Dairy Sci; 2006 Apr; 89(4):1311-23. PubMed ID: 16537963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. True metabolisable energy, heat increment and net energy values of two high fibre foodstuffs in cockerels.
    Sarmiento-Franco L; MacLeod MG; McNab JM
    Br Poult Sci; 2000 Dec; 41(5):625-9. PubMed ID: 11201444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Research note: a comparison of metabolisable energy values of lucerne and barley between young and mature ostriches.
    Cilliers SC; Hayes JP; Sales J; Chwalibog A; Du Preez JJ
    Arch Tierernahr; 1998; 51(1):77-82. PubMed ID: 9638307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of energy and protein requirement for maintenance and growth and evaluation for the effects of gender upon nutrient requirement in Dorper × Hu Crossbred Lambs.
    Nie HT; Zhang H; You JH; Wang F
    Trop Anim Health Prod; 2015 Jun; 47(5):841-53. PubMed ID: 25791878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of growth and efficiency of dietary energy utilization by growing pigs offered feeding programs based on the metabolizable energy or the net energy system.
    Acosta J; Patience JF; Boyd RD
    J Anim Sci; 2016 Apr; 94(4):1520-30. PubMed ID: 27136011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of metabolisable energy concentrations of fresh-cut grass using digestibility data measured with non-pregnant non-lactating cows.
    Stergiadis S; Allen M; Chen X; Wills D; Yan T
    Br J Nutr; 2015 May; 113(10):1571-84. PubMed ID: 25864464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling heat production and energy balance in group-housed growing pigs exposed to low or high ambient temperatures.
    Quiniou N; Noblet J; van Milgen J; Dubois S
    Br J Nutr; 2001 Jan; 85(1):97-106. PubMed ID: 11227038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of metabolisable energy value of broiler diets and water excretion from dietary chemical analyses.
    Carré B; Lessire M; Juin H
    Animal; 2013 Aug; 7(8):1246-58. PubMed ID: 23527560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dietary protein and energy concentrations on performance and carcase characteristics of chukar partridge (Alectoris chukar) raised in captivity.
    Ozek K; Yazgan O; Bahtiyarca Y
    Br Poult Sci; 2003 Jul; 44(3):419-26. PubMed ID: 12964626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-muscled and conventional cattle have the same net energy requirements if these are related to mature and current body protein mass, and to gain composition.
    Schiavon S; Bittante G
    J Anim Sci; 2012 Nov; 90(11):3973-87. PubMed ID: 22829619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dynamic model of metabolizable energy utilization in growing and mature cattle. III. Model evaluation.
    Williams CB; Jenkins TG
    J Anim Sci; 2003 Jun; 81(6):1390-8. PubMed ID: 12817485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of dietary supplementation of choline and carnitine on growth performance, meat oxidative stability and carcass composition of broiler chickens fed diets with different metabolisable energy levels.
    Jahanian R; Ashnagar M
    Br Poult Sci; 2018 Aug; 59(4):470-476. PubMed ID: 29856245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The development of a model to predict BW gain of growing cattle fed grass silage-based diets.
    Huuskonen A; Huhtanen P
    Animal; 2015 Aug; 9(8):1329-40. PubMed ID: 25891155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.