BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 9672841)

  • 41. Effects of retinoic acid on the distribution of glycoconjugates during mouse tail bud development.
    Griffith CM; Wiley MJ
    Teratology; 1990 Mar; 41(3):281-8. PubMed ID: 2326752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Runx1 is involved in the fusion of the primary and the secondary palatal shelves.
    Charoenchaikorn K; Yokomizo T; Rice DP; Honjo T; Matsuzaki K; Shintaku Y; Imai Y; Wakamatsu A; Takahashi S; Ito Y; Takano-Yamamoto T; Thesleff I; Yamamoto M; Yamashiro T
    Dev Biol; 2009 Feb; 326(2):392-402. PubMed ID: 19000669
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphological observations in normal primary palate and cleft lip embryos in the Kyoto collection.
    Diewert VM; Shiota K
    Teratology; 1990 Jun; 41(6):663-77. PubMed ID: 2353315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ultrastructural effects of prednisolone on the mesenchyme of the palatal shelf in the mouse.
    Innes PB
    J Craniofac Genet Dev Biol; 1985; 5(3):287-97. PubMed ID: 4044791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinoic acid alters epithelial differentiation during palatogenesis.
    Abbott BD; Pratt RM
    J Craniofac Genet Dev Biol; 1991; 11(4):315-25. PubMed ID: 1812132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Retinoic acid induced cell cycle arrest and apoptosis in mouse embryonic palatal mesenchymal cells].
    Yu ZL; Lin JX; Xiao Y; Han J
    Wei Sheng Yan Jiu; 2005 Sep; 34(5):566-9. PubMed ID: 16329598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of methanol on embryonic mouse palate in serum-free organ culture.
    Abbott BD; Logsdon TR; Wilke TS
    Teratology; 1994 Feb; 49(2):122-34. PubMed ID: 8016743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study of craniofacial growth during secondary palate development in four strains of mice.
    Diewert VM
    J Craniofac Genet Dev Biol; 1982; 2(4):247-63. PubMed ID: 7183704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. D-penicillamine-induced cleft palate in mice.
    Myint B
    Teratology; 1984 Dec; 30(3):333-40. PubMed ID: 6515561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell behaviour and cleft palate in the mutant mouse, amputated.
    Flint OP
    J Embryol Exp Morphol; 1980 Aug; 58():131-42. PubMed ID: 7441149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel insights into a retinoic-acid-induced cleft palate based on Rac1 regulation of the fibronectin arrangement.
    Tang Q; Li L; Lee MJ; Ge Q; Lee JM; Jung HS
    Cell Tissue Res; 2016 Mar; 363(3):713-22. PubMed ID: 26329303
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cleft palate by picrotoxin or 3-MP and palatal shelf elevation in GABA-deficient mice.
    Ding R; Tsunekawa N; Obata K
    Neurotoxicol Teratol; 2004; 26(4):587-92. PubMed ID: 15203181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of retinoic acid on in vitro proliferation activity and glycosaminoglycan synthesis of mesenchymal cells from palatal shelves of mouse fetuses.
    Yoshikawa H; Kukita T; Kurisu K; Tashiro H
    J Craniofac Genet Dev Biol; 1987; 7(1):45-51. PubMed ID: 3597721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fate of unfused medial edge epithelia in rat fetuses with experimentally induced cleft palate: I. From 16.3 to 17.7 days of gestation.
    Schüpbach PM; Schroeder HE
    J Craniofac Genet Dev Biol Suppl; 1986; 2():293-318. PubMed ID: 3491119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pathogenesis of cleft palate in mouse embryos exposed to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD).
    Takagi TN; Matsui KA; Yamashita K; Ohmori H; Yasuda M
    Teratog Carcinog Mutagen; 2000; 20(2):73-86. PubMed ID: 10679751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strain differences between C57BL/6 and SWV mice in time of palate closure and induction of palatal slit and cleft palate.
    Kusanagi T
    Teratology; 1985 Apr; 31(2):279-83. PubMed ID: 3992497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth of the secondary palate in the hamster following hydrocortisone treatment: shelf area, cell number, and DNA synthesis.
    Shah RM; Chen YP; Burdett DN
    Teratology; 1989 Aug; 40(2):173-80. PubMed ID: 2772852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An extracellular matrix infrastructure provides support for murine secondary palatal shelf remodelling.
    Morris-Wiman J; Brinkley L
    Anat Rec; 1992 Dec; 234(4):575-86. PubMed ID: 1280922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.