BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 9672842)

  • 1. Differences in extracellular matrix components and cell density during normal and dexamethasone-treated secondary palate development in two strains of mice with different susceptibility to glucocorticoid induced-clefting.
    Montenegro MA; Rojas M; Dominguez S; Rosales CJ
    J Craniofac Genet Dev Biol; 1998; 18(2):100-6. PubMed ID: 9672842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokeratin, vimentin and E-cadherin immunodetection in the embryonic palate in two strains of mice with different susceptibility to glucocorticoid-induced clefting.
    Montenegro MA; Rojas M; Dominguez S; Vergara A
    J Craniofac Genet Dev Biol; 2000; 20(3):137-43. PubMed ID: 11321598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in collagen and cell density during normal and dexamethasone-treated secondary palate development in two strains of mice.
    Montenegro MA; Rojas M; Dominguez S; Posada J
    Int J Dev Biol; 1996; Suppl 1():245S-246S. PubMed ID: 9087781
    [No Abstract]   [Full Text] [Related]  

  • 4. [Cellular and molecular differences in cleft palate susceptibility in mice].
    Montenegro MA; Domínguez S; Palomino H
    Rev Med Chil; 1995 Mar; 123(3):283-91. PubMed ID: 8525166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazepam-induced cleft palate in the mouse and lack of correlation with the H-2 locus.
    Tocco DR; Renskers K; Zimmerman EF
    Teratology; 1987 Jun; 35(3):439-45. PubMed ID: 3629520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extracellular matrix infrastructure provides support for murine secondary palatal shelf remodelling.
    Morris-Wiman J; Brinkley L
    Anat Rec; 1992 Dec; 234(4):575-86. PubMed ID: 1280922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some new aspects of dexamethasone-induced cleft palate in mice.
    Sauerbier I
    Anat Anz; 1987; 163(4):319-22. PubMed ID: 3631525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ; Francis BM; Foley GL
    J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive stages and dose-response analyses of palatal slit and cleft palate in C57BL/6 mice treated with a glucocorticoid.
    Kusanagi T
    Teratology; 1984 Apr; 29(2):281-6. PubMed ID: 6740512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palatal width growth rates as the genetic determinant of cleft palate induced by vitamin A.
    Siegel MI; Mooney MP
    J Craniofac Genet Dev Biol Suppl; 1986; 2():187-91. PubMed ID: 3491112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain differences between C57BL/6 and SWV mice in time of palate closure and induction of palatal slit and cleft palate.
    Kusanagi T
    Teratology; 1985 Apr; 31(2):279-83. PubMed ID: 3992497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse palatal width growth rates as an "at risk" factor in the development of cleft palate induced by hypervitaminosis A.
    Vergato LA; Doerfler RJ; Mooney MP; Siegel MI
    J Craniofac Genet Dev Biol; 1997; 17(4):204-10. PubMed ID: 9493079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confirmation of the role of N-acetyltransferase 2 in teratogen-induced cleft palate using transgenics and knockouts.
    Erickson RP; Cao W; Acuña DK; Strnatka DW; Hunter RJ; Chau BT; Wakefield LV; Sim E; McQueen CA
    Mol Reprod Dev; 2008 Jun; 75(6):1071-6. PubMed ID: 18161794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice.
    Zhang Y; Mori T; Iseki K; Hagino S; Takaki H; Takeuchi M; Hikake T; Tase C; Murakawa M; Yokoya S; Wanaka A
    Dev Dyn; 2003 Apr; 226(4):618-26. PubMed ID: 12666199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of chlorcyclizine-induced glycosaminoglycan alterations on palatal mesenchyme-basal lamina relationships in the mouse.
    Brinkley LL; Morris-Wiman J
    Am J Anat; 1986 Jul; 176(3):379-89. PubMed ID: 2874737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticosteroid-induced cleft palate in short-ear mice.
    Marazita ML; Jaskoll T; Melnick M
    J Craniofac Genet Dev Biol; 1988; 8(1):47-51. PubMed ID: 3209678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smad2/3 is involved in growth inhibition of mouse embryonic palate mesenchymal cells induced by all-trans retinoic acid.
    Wang M; Huang H; Chen Y
    Birth Defects Res A Clin Mol Teratol; 2009 Sep; 85(9):780-90. PubMed ID: 19388084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic independence of the embryonic reactivity difference to cortisone- and 6-aminonicotinamide-induced cleft palate in the mouse.
    Biddle FG; Fraser FC
    Teratology; 1979 Apr; 19(2):207-11. PubMed ID: 157557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A glucocorticoid receptor in fetal mouse: its relationship to cleft palate formation.
    Hackney JF
    Teratology; 1980 Feb; 21(1):39-51. PubMed ID: 7385055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secalonic acid D-induced changes in palatal cyclic AMP and cyclic GMP in developing mice.
    Eldeib MM; Reddy CS
    Teratology; 1988 Apr; 37(4):343-52. PubMed ID: 2839909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.