These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9672898)

  • 1. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients.
    Whatley SA; Curti D; Das Gupta F; Ferrier IN; Jones S; Taylor C; Marchbanks RM
    Mol Psychiatry; 1998 May; 3(3):227-37. PubMed ID: 9672898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane.
    Navarro F; Navas P; Burgess JR; Bello RI; De Cabo R; Arroyo A; Villalba JM
    FASEB J; 1998 Dec; 12(15):1665-73. PubMed ID: 9837856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial involvement in schizophrenia and other functional psychoses.
    Whatley SA; Curti D; Marchbanks RM
    Neurochem Res; 1996 Sep; 21(9):995-1004. PubMed ID: 8897462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells.
    Forthoffer N; Gómez-Díaz C; Bello RI; Burón MI; Martín SF; Rodríguez-Aguilera JC; Navas P; Villalba JM
    J Bioenerg Biomembr; 2002 Jun; 34(3):209-19. PubMed ID: 12171070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9.
    Fitzsimmons SA; Workman P; Grever M; Paull K; Camalier R; Lewis AD
    J Natl Cancer Inst; 1996 Mar; 88(5):259-69. PubMed ID: 8614004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver.
    Arinç E; Cakir D
    Int J Biochem Cell Biol; 1999 Feb; 31(2):345-62. PubMed ID: 10216966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of NADPH-dependent ubiquinone reductase activity in rat liver cytosol: effect of various factors on ubiquinone-reducing activity and discrimination from other quinone reductases.
    Takahashi T; Okamoto T; Kishi T
    J Biochem; 1996 Feb; 119(2):256-63. PubMed ID: 8882715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria.
    Cadenas E; Boveris A; Ragan CI; Stoppani AO
    Arch Biochem Biophys; 1977 Apr; 180(2):248-57. PubMed ID: 195520
    [No Abstract]   [Full Text] [Related]  

  • 10. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting the intracellular generation of free radicals from quinones.
    Powis G; Svingen BA; Appel P
    Adv Exp Med Biol; 1981; 136 Pt A():349-58. PubMed ID: 6283813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural role of serine 127 in the NADH-binding site of human NADH-cytochrome b5 reductase.
    Yubisui T; Shirabe K; Takeshita M; Kobayashi Y; Fukumaki Y; Sakaki Y; Takano T
    J Biol Chem; 1991 Jan; 266(1):66-70. PubMed ID: 1898726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of purified sheep lung microsomal NADH-cytochrome b5 reductase.
    Güray T; Arinç E
    Int J Biochem; 1991; 23(11):1315-20. PubMed ID: 1794453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective role of ubiquinone in vitamin E and selenium-deficient plasma membranes.
    Navarro F; Arroyo A; Martín SF; Bello RI; de Cabo R; Burgess JR; Navas P; Villalba JM
    Biofactors; 1999; 9(2-4):163-70. PubMed ID: 10416028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome b5-like hemoprotein/cytochrome b5 reductase complex in rat liver mitochondria has NADH-linked aquacobalamin reductase activity.
    Saido H; Watanabe F; Tamura Y; Miyatake K; Ito A; Yubisui T; Nakano Y
    J Nutr; 1994 Jul; 124(7):1037-40. PubMed ID: 8027853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH-cytochrome b5 reductase and cytochrome b5 isoforms as models for the study of post-translational targeting to the endoplasmic reticulum.
    Borgese N; D'Arrigo A; De Silvestris M; Pietrini G
    FEBS Lett; 1993 Jun; 325(1-2):70-5. PubMed ID: 8513896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.