These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1249 related articles for article (PubMed ID: 9673671)

  • 1. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially independent activity patterns in functional MRI data during the stroop color-naming task.
    McKeown MJ; Jung TP; Makeig S; Brown G; Kindermann SS; Lee TW; Sejnowski TJ
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):803-10. PubMed ID: 9448244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component.
    Chen H; Yao D; Zhuo Y; Chen L
    Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiblind spatial ICA of fMRI using spatial constraints.
    Lin QH; Liu J; Zheng YR; Liang H; Calhoun VD
    Hum Brain Mapp; 2010 Jul; 31(7):1076-88. PubMed ID: 20017117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI.
    Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA
    Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified SPM-ICA for fMRI analysis.
    Hu D; Yan L; Liu Y; Zhou Z; Friston KJ; Tan C; Wu D
    Neuroimage; 2005 Apr; 25(3):746-55. PubMed ID: 15808976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An information-theoretic criterion for intrasubject alignment of FMRI time series: motion corrected independent component analysis.
    Liao R; Krolik JL; McKeown MJ
    IEEE Trans Med Imaging; 2005 Jan; 24(1):29-44. PubMed ID: 15638184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multi-subject ICA methods for analysis of fMRI data.
    Erhardt EB; Rachakonda S; Bedrick EJ; Allen EA; Adali T; Calhoun VD
    Hum Brain Mapp; 2011 Dec; 32(12):2075-95. PubMed ID: 21162045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms.
    Calhoun VD; Adali T; Pearlson GD; Pekar JJ
    Hum Brain Mapp; 2001 May; 13(1):43-53. PubMed ID: 11284046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
    Correa N; Adali T; Calhoun VD
    Magn Reson Imaging; 2007 Jun; 25(5):684-94. PubMed ID: 17540281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic independent component labeling for artifact removal in fMRI.
    Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA
    Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring spatiotemporal network transitions in task functional MRI.
    Scott G; Hellyer PJ; Hampshire A; Leech R
    Hum Brain Mapp; 2015 Apr; 36(4):1348-64. PubMed ID: 25504834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporally constrained ICA with threshold and its application to fMRI data.
    Long Z; Wang Z; Zhang J; Zhao X; Yao L
    BMC Med Imaging; 2019 Jan; 19(1):6. PubMed ID: 30654748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source density-driven independent component analysis approach for fMRI data.
    Hong B; Pearlson GD; Calhoun VD
    Hum Brain Mapp; 2005 Jul; 25(3):297-307. PubMed ID: 15832316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian process based independent analysis for temporal source separation in fMRI.
    Hald DH; Henao R; Winther O
    Neuroimage; 2017 May; 152():563-574. PubMed ID: 28249758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.