These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 9673914)
21. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Liew C; Curtis CF Med Vet Entomol; 2004 Dec; 18(4):351-60. PubMed ID: 15642001 [TBL] [Abstract][Full Text] [Related]
22. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies. Chadee DD; Lakhan A; Ramdath WR; Persad RC J Am Mosq Control Assoc; 1993 Sep; 9(3):346-8. PubMed ID: 8245947 [TBL] [Abstract][Full Text] [Related]
23. Amounts of glycogen, lipid, and sugar in adult female Aedes aegypti (Diptera: Culicidae) fed sucrose. Naksathit AT; Edman JD; Scott TW J Med Entomol; 1999 Jan; 36(1):8-12. PubMed ID: 10071486 [TBL] [Abstract][Full Text] [Related]
24. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Sasmita HI; Tu WC; Bong LJ; Neoh KB Parasit Vectors; 2019 Dec; 12(1):578. PubMed ID: 31823817 [TBL] [Abstract][Full Text] [Related]
25. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti). Ruktanonchai NW; Lounibos LP; Smith DL; Allan SA Med Vet Entomol; 2015 Sep; 29(3):255-62. PubMed ID: 25982411 [TBL] [Abstract][Full Text] [Related]
26. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes. Harrison RE; Chen K; South L; Lorenzi A; Brown MR; Strand MR Parasit Vectors; 2022 Apr; 15(1):127. PubMed ID: 35413939 [TBL] [Abstract][Full Text] [Related]
27. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. Telang A; Wells MA J Insect Physiol; 2004 Jul; 50(7):677-85. PubMed ID: 15234628 [TBL] [Abstract][Full Text] [Related]
28. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Scott TW; Naksathit A; Day JF; Kittayapong P; Edman JD Am J Trop Med Hyg; 1997 Aug; 57(2):235-9. PubMed ID: 9288822 [TBL] [Abstract][Full Text] [Related]
29. Dietary glycerol and adult access to water: effects on fecundity and longevity in the almond moth. Ryne C; Nilsson PA; Siva-Jothy MT J Insect Physiol; 2004 May; 50(5):429-34. PubMed ID: 15121456 [TBL] [Abstract][Full Text] [Related]
30. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. Zhou G; Flowers M; Friedrich K; Horton J; Pennington J; Wells MA J Insect Physiol; 2004 Apr; 50(4):337-49. PubMed ID: 15081827 [TBL] [Abstract][Full Text] [Related]
31. Effects of partial blood engorgement and pretest carbohydrate availability on the repellency of deet to Aedes albopictus. Xue RD; Barnard DR J Vector Ecol; 1999 Dec; 24(2):111-4. PubMed ID: 10672540 [TBL] [Abstract][Full Text] [Related]
32. The effect of larval and adult nutrition on survival and fecundity of dengue vector Aedes albopictus Skuse (Diptera: Culicidae). Yamany AS; Adham FK J Egypt Soc Parasitol; 2014 Aug; 44(2):447-54. PubMed ID: 25597159 [TBL] [Abstract][Full Text] [Related]
33. Differences between the nutritional reserves of laboratory-maintained and field-collected adult mosquitoes. Day JF; Van Handel E J Am Mosq Control Assoc; 1986 Jun; 2(2):154-7. PubMed ID: 2906967 [TBL] [Abstract][Full Text] [Related]
34. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Maciel-De-Freitas R; Codeço CT; Lourenço-De-Oliveira R Med Vet Entomol; 2007 Sep; 21(3):284-92. PubMed ID: 17897370 [TBL] [Abstract][Full Text] [Related]
35. Partitioning of glycogen, lipid, and sugar in ovaries and body remnants of female Aedes aegypti (Diptera: Culicidae) fed human blood. Naksathit AT; Edman JD; Scott TW J Med Entomol; 1999 Jan; 36(1):18-22. PubMed ID: 10071488 [TBL] [Abstract][Full Text] [Related]
36. Blood-feeding and immunogenic Aedes aegypti saliva proteins. Wasinpiyamongkol L; Patramool S; Luplertlop N; Surasombatpattana P; Doucoure S; Mouchet F; Séveno M; Remoue F; Demettre E; Brizard JP; Jouin P; Biron DG; Thomas F; Missé D Proteomics; 2010 May; 10(10):1906-16. PubMed ID: 19882664 [TBL] [Abstract][Full Text] [Related]
37. Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Russell RC; Webb CE; Williams CR; Ritchie SA Med Vet Entomol; 2005 Dec; 19(4):451-7. PubMed ID: 16336310 [TBL] [Abstract][Full Text] [Related]
38. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae). Finlayson C; Saingamsook J; Somboon P Acta Trop; 2015 Dec; 152():245-251. PubMed ID: 26440474 [TBL] [Abstract][Full Text] [Related]
39. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Mourya DT; Yadav P; Mishra AC Am J Trop Med Hyg; 2004 Apr; 70(4):346-50. PubMed ID: 15100445 [TBL] [Abstract][Full Text] [Related]
40. Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes. Reeves WK J Vector Ecol; 2004 Jun; 29(1):159-63. PubMed ID: 15266753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]