These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 9673914)
41. Floral resources impact longevity and oviposition rate of a parasitoid in the field. Lee JC; Heimpel GE J Anim Ecol; 2008 May; 77(3):565-72. PubMed ID: 18248386 [TBL] [Abstract][Full Text] [Related]
42. Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Coria C; Almiron W; Valladares G; Carpinella C; LudueƱa F; Defago M; Palacios S Bioresour Technol; 2008 May; 99(8):3066-70. PubMed ID: 17669645 [TBL] [Abstract][Full Text] [Related]
43. Reduced oviposition of Aedes aegypti gravid females in domestic containers with predatory fish. Pamplona Lde G; Alencar CH; Lima JW; Heukelbach J Trop Med Int Health; 2009 Nov; 14(11):1347-50. PubMed ID: 19754521 [TBL] [Abstract][Full Text] [Related]
44. Effects of forced egg-retention in Aedes albopictus on adult survival and reproduction following application of DEET as an oviposition deterrent. Xue RD; Ali A; Barnard DR J Vector Ecol; 2005 Jun; 30(1):45-8. PubMed ID: 16007955 [TBL] [Abstract][Full Text] [Related]
45. Effects of sublethal concentrations of Vectobac on biological parameters of Aedes aegypti. Flores AE; Garcia GP; Badii MH; Rodriguez Tovar MA; Fernandez Salas I J Am Mosq Control Assoc; 2004 Dec; 20(4):412-7. PubMed ID: 15669383 [TBL] [Abstract][Full Text] [Related]
46. The importance of male body size on sperm uptake and usage, and female fecundity in Aedes aegypti and Aedes albopictus. De Jesus CE; Reiskind MH Parasit Vectors; 2016 Aug; 9(1):447. PubMed ID: 27519588 [TBL] [Abstract][Full Text] [Related]
47. Effect of ten chlorophytes on larval survival, development and adult body size of the mosquito Aedes aegypti. Ahmad R; Chu WL; Ismail Z; Lee HL; Phang SM Southeast Asian J Trop Med Public Health; 2004 Mar; 35(1):79-87. PubMed ID: 15272748 [TBL] [Abstract][Full Text] [Related]
48. Population and parity levels of Aedes aegypti collected in Tucson. Hoeck PA; Ramberg FB; Merrill SA; Moll C; Hagedorn HH J Vector Ecol; 2003 Jun; 28(1):65-73. PubMed ID: 12831130 [TBL] [Abstract][Full Text] [Related]
49. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: with implications for mass release of sterile mosquitoes. Chadee DD; Sutherland JM; Gilles JR Acta Trop; 2014 Apr; 132 Suppl():S86-90. PubMed ID: 24076041 [TBL] [Abstract][Full Text] [Related]
50. Effects of blood type and blood handling on feeding success, longevity and egg production in the body louse, Pediculus humanus humanus. Mumcuoglu KY; Danilevich M; Zelig O; Grinbaum H; Friger M; Meinking TL Med Vet Entomol; 2011 Mar; 25(1):12-6. PubMed ID: 20678099 [TBL] [Abstract][Full Text] [Related]
51. Fecundity of naturally bloodfed Culiseta melanura. Oliver J; Howard JJ; Morris CD J Am Mosq Control Assoc; 1996 Dec; 12(4):664-8. PubMed ID: 9046473 [TBL] [Abstract][Full Text] [Related]
52. EFFECTS OF SUGAR CONCENTRATION ON FECUNDITY, BITING BEHAVIOR AND SURVIVABILITY OF FEMALE AEDES (STEGOMYIA) ALBOPICTUS (SKUSE). Aiman M; Kassim NFA; Jong ZW; Webb CE Southeast Asian J Trop Med Public Health; 2016 Nov; 47(6):1160-6. PubMed ID: 29634162 [TBL] [Abstract][Full Text] [Related]
53. Sugar digestion in mosquitoes: identification and characterization of three midgut alpha-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Souza-Neto JA; Machado FP; Lima JB; Valle D; Ribolla PE Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):993-1000. PubMed ID: 17449310 [TBL] [Abstract][Full Text] [Related]
54. An experimental study on the detection of fructose in Aedes aegypti. Costero A; Attardo GM; Scott TW; Edman JD J Am Mosq Control Assoc; 1998 Sep; 14(3):234-42. PubMed ID: 9813818 [TBL] [Abstract][Full Text] [Related]
55. Size variation and reproductive success in the mosquito Aedes cantans. Renshaw M; Service MW; Birley MH Med Vet Entomol; 1994 Apr; 8(2):179-86. PubMed ID: 8025328 [TBL] [Abstract][Full Text] [Related]
56. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
57. Malarial infection in Aedes aegypti : effects on feeding, fecundity and metabolic rate. Gray EM; Bradley TJ Parasitology; 2006 Feb; 132(Pt 2):169-76. PubMed ID: 16197594 [TBL] [Abstract][Full Text] [Related]
58. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Mourya DT; Gokhale ; Basu A; Barde PV; Sapkal GN; Padbidri VS; Gore MM Acta Virol; 2001 Apr; 45(2):67-71. PubMed ID: 11719984 [TBL] [Abstract][Full Text] [Related]
59. Plant nutrient quality impacts survival and reproductive fitness of the dengue vector Aedes aegypti. Nyasembe VO; Tchouassi DP; Muturi MN; Pirk CWW; Sole CL; Torto B Parasit Vectors; 2021 Jan; 14(1):4. PubMed ID: 33397448 [TBL] [Abstract][Full Text] [Related]
60. Mating and nutritional state affect the reproduction of Aedes albopictus mosquitoes. Klowden MJ J Am Mosq Control Assoc; 1993 Jun; 9(2):169-73. PubMed ID: 8350073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]