These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 967401)

  • 41. Preserve Precambrian fossil heritage from mining.
    Yang H; Ma M; Flower RJ; Thompson JR; Ge W
    Nat Ecol Evol; 2017 Aug; 1(8):1048-1049. PubMed ID: 29046588
    [No Abstract]   [Full Text] [Related]  

  • 42. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780-740 million-year-old Chuar Group, Grand Canyon, USA.
    Porter SM
    Proc Biol Sci; 2016 May; 283(1831):. PubMed ID: 27194696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".
    Li Q; Ni X
    Sci Rep; 2016 Jan; 6():18627. PubMed ID: 26766238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution to Darwin's dilemma: discovery of the missing Precambrian record of life.
    Schopf JW
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):6947-53. PubMed ID: 10860955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Melanoidin and aldocyanoin microspheres: implications for chemical evolution and early precambrian micropaleontology.
    Kenyon DH; Nissenbaum A
    J Mol Evol; 1976 Apr; 7(3):245-51. PubMed ID: 778393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fresh look at the fossil evidence for early Archaean cellular life.
    Brasier M; McLoughlin N; Green O; Wacey D
    Philos Trans R Soc Lond B Biol Sci; 2006 Jun; 361(1470):887-902. PubMed ID: 16754605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for early life in Earth's oldest hydrothermal vent precipitates.
    Dodd MS; Papineau D; Grenne T; Slack JF; Rittner M; Pirajno F; O'Neil J; Little CT
    Nature; 2017 Mar; 543(7643):60-64. PubMed ID: 28252057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition.
    Knoll AH; Sergeev VN
    Neues Jahrb Geol Palaontol Abh; 1995 Feb; 195(1-3):289-302. PubMed ID: 11539427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China.
    Xiao S; Knoll AH
    Lethaia; 1999 Sep; 32(3):219-40. PubMed ID: 11543524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser--Raman imagery of Earth's earliest fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Wdowiak TJ; Czaja AD
    Nature; 2002 Mar; 416(6876):73-6. PubMed ID: 11882894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo.
    Knoll AH
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6743-50. PubMed ID: 8041692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution.
    Martin MW; Grazhdankin DV; Bowring SA; Evans DA; Fedonkin MA; Kirschvink JL
    Science; 2000 May; 288(5467):841-5. PubMed ID: 10797002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia.
    Walter MR; Desmarais D; Farmer JD; Hinman NW
    Palaios; 1996; 11():497-518. PubMed ID: 11541250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals.
    Narbonne GM; Kaufman AJ; Knoll AH
    Geol Soc Am Bull; 1994 Oct; 106(10):1281-92. PubMed ID: 11539403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Periodicity of extinctions in the geologic past.
    Raup DM; Sepkoski JJ
    Proc Natl Acad Sci U S A; 1984 Feb; 81(3):801-5. PubMed ID: 6583680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.
    Cannatella D
    Cytogenet Genome Res; 2015; 145(3-4):283-301. PubMed ID: 26279165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.
    Caldwell MW; Nydam RL; Palci A; ApesteguĂ­a S
    Nat Commun; 2015 Jan; 6():5996. PubMed ID: 25625704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphatic scales in vase-shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard.
    Riedman LA; Porter SM; Czaja AD
    Geobiology; 2021 Jul; 19(4):364-375. PubMed ID: 33634584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.