These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9674130)
1. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. Arino S; Marchal R; Vandecasteele JP J Appl Microbiol; 1998 May; 84(5):769-76. PubMed ID: 9674130 [TBL] [Abstract][Full Text] [Related]
2. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Nie M; Yin X; Ren C; Wang Y; Xu F; Shen Q Biotechnol Adv; 2010; 28(5):635-43. PubMed ID: 20580808 [TBL] [Abstract][Full Text] [Related]
3. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Abalos A; Viñas M; Sabaté J; Manresa MA; Solanas AM Biodegradation; 2004 Aug; 15(4):249-60. PubMed ID: 15473554 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104 [TBL] [Abstract][Full Text] [Related]
5. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6. Ma Z; Liu J; Dick RP; Li H; Shen D; Gao Y; Waigi MG; Ling W Environ Pollut; 2018 Sep; 240():359-367. PubMed ID: 29751332 [TBL] [Abstract][Full Text] [Related]
6. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Noordman WH; Janssen DB Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306 [TBL] [Abstract][Full Text] [Related]
7. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil. Chang JS; Cha DK; Radosevich M; Jin Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563 [TBL] [Abstract][Full Text] [Related]
8. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Shreve GS; Inguva S; Gunnam S Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984 [TBL] [Abstract][Full Text] [Related]
10. Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids. Szczepaniak Z; Czarny J; Staninska-Pięta J; Lisiecki P; Zgoła-Grześkowiak A; Cyplik P; Chrzanowski Ł; Wolko Ł; Marecik R; Juzwa W; Glazar K; Piotrowska-Cyplik A Environ Sci Pollut Res Int; 2016 Nov; 23(22):23043-23056. PubMed ID: 27585583 [TBL] [Abstract][Full Text] [Related]
11. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Sawulski P; Boots B; Clipson N; Doyle E Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321 [TBL] [Abstract][Full Text] [Related]
12. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
13. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488 [TBL] [Abstract][Full Text] [Related]
14. Polycyclic aromatic hydrocarbons degrading microflora in a tropical oil-production well. Yu C; Yao J; Cai M; Yuan H; Chen H; Ceccanti B Bull Environ Contam Toxicol; 2014 Nov; 93(5):632-6. PubMed ID: 25216932 [TBL] [Abstract][Full Text] [Related]
15. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Dagher F; Déziel E; Lirette P; Paquette G; Bisaillon JG; Villemur R Can J Microbiol; 1997 Apr; 43(4):368-77. PubMed ID: 9115093 [TBL] [Abstract][Full Text] [Related]
17. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Tecon R; van der Meer JR Appl Microbiol Biotechnol; 2010 Jan; 85(4):1131-9. PubMed ID: 19730847 [TBL] [Abstract][Full Text] [Related]
18. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Perfumo A; Banat IM; Canganella F; Marchant R Appl Microbiol Biotechnol; 2006 Aug; 72(1):132. PubMed ID: 16344932 [TBL] [Abstract][Full Text] [Related]
19. The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Bouchez M; Blanchet D; Vandecasteele JP Appl Microbiol Biotechnol; 1996 May; 45(4):556-61. PubMed ID: 8785039 [TBL] [Abstract][Full Text] [Related]
20. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Das K; Mukherjee AK Bioresour Technol; 2007 May; 98(7):1339-45. PubMed ID: 16828284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]