These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 9675019)
21. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B; Brüggler K; Kratzer R; Mayr P J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376 [TBL] [Abstract][Full Text] [Related]
22. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142 [TBL] [Abstract][Full Text] [Related]
23. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R; Nidetzky B Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761 [TBL] [Abstract][Full Text] [Related]
25. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. Bohren KM; Grimshaw CE; Gabbay KH J Biol Chem; 1992 Oct; 267(29):20965-70. PubMed ID: 1400412 [TBL] [Abstract][Full Text] [Related]
26. A glutathione-specific aldose reductase of Leishmania donovani and its potential implications for methylglyoxal detoxification pathway. Rath J; Gowri VS; Chauhan SC; Padmanabhan PK; Srinivasan N; Madhubala R Gene; 2009 Jan; 429(1-2):1-9. PubMed ID: 18983902 [TBL] [Abstract][Full Text] [Related]
27. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876 [TBL] [Abstract][Full Text] [Related]
28. [Regulation of crystalline lens aldose reductase activity. Nonhyperbolic oxidation kinetics of NADPH by glucose]. Vartanov SS; Pavlov AR; Iaropolov AI Biokhimiia; 1990 Nov; 55(11):2046-57. PubMed ID: 2128191 [TBL] [Abstract][Full Text] [Related]
29. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Nidetzky B; Mayr P; Hadwiger P; Stütz AE Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539 [TBL] [Abstract][Full Text] [Related]
30. Effects of deletion and site-directed mutations on ligation steps of NAD+-dependent DNA ligase: a biochemical analysis of BRCA1 C-terminal domain. Feng H; Parker JM; Lu J; Cao W Biochemistry; 2004 Oct; 43(39):12648-59. PubMed ID: 15449954 [TBL] [Abstract][Full Text] [Related]
31. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540 [TBL] [Abstract][Full Text] [Related]
33. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986 [TBL] [Abstract][Full Text] [Related]
34. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295 [TBL] [Abstract][Full Text] [Related]
36. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
37. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis. Nidetzky B; Mayr P; Neuhauser W; Puchberger M Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077 [TBL] [Abstract][Full Text] [Related]
38. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
39. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515 [TBL] [Abstract][Full Text] [Related]
40. Structural features of the aldose reductase and aldehyde reductase inhibitor-binding sites. El-Kabbani O; Wilson DK; Petrash M; Quiocho FA Mol Vis; 1998 Sep; 4():19. PubMed ID: 9756955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]