These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 9675019)
41. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related]
42. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Davis CA; Crowley LJ; Barber MJ Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472 [TBL] [Abstract][Full Text] [Related]
43. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Wang JF; Wei DQ; Lin Y; Wang YH; Du HL; Li YX; Chou KC Biochem Biophys Res Commun; 2007 Jul; 359(2):323-9. PubMed ID: 17544374 [TBL] [Abstract][Full Text] [Related]
44. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Kratzer R; Leitgeb S; Wilson DK; Nidetzky B Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198 [TBL] [Abstract][Full Text] [Related]
45. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Woodyer R; van der Donk WA; Zhao H Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270 [TBL] [Abstract][Full Text] [Related]
46. Purification and characterization of NAD-dependent morphine 6-dehydrogenase from hamster liver cytosol, a new member of the aldo-keto reductase superfamily. Todaka T; Yamano S; Toki S Arch Biochem Biophys; 2000 Feb; 374(2):189-97. PubMed ID: 10666297 [TBL] [Abstract][Full Text] [Related]
47. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Ye Q; Hyndman D; Green NC; Li L; Jia Z; Flynn TG Chem Biol Interact; 2001 Jan; 130-132(1-3):651-8. PubMed ID: 11306083 [TBL] [Abstract][Full Text] [Related]
48. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Moon J; Liu ZL Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197 [TBL] [Abstract][Full Text] [Related]
49. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase. Bernard N; Johnsen K; Holbrook JJ; Delcour J Biochem Biophys Res Commun; 1995 Mar; 208(3):895-900. PubMed ID: 7702618 [TBL] [Abstract][Full Text] [Related]
50. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Scrutton NS; Berry A; Perham RN Nature; 1990 Jan; 343(6253):38-43. PubMed ID: 2296288 [TBL] [Abstract][Full Text] [Related]
51. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies. Di Luccio E; Elling RA; Wilson DK Biochem J; 2006 Nov; 400(1):105-14. PubMed ID: 16813561 [TBL] [Abstract][Full Text] [Related]
52. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. Spiegelhauer O; Mende S; Dickert F; Knauer SH; Ullmann GM; Dobbek H J Mol Biol; 2010 Apr; 398(1):66-82. PubMed ID: 20206186 [TBL] [Abstract][Full Text] [Related]
53. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Rondeau JM; TĂȘte-Favier F; Podjarny A; Reymann JM; Barth P; Biellmann JF; Moras D Nature; 1992 Jan; 355(6359):469-72. PubMed ID: 1734286 [TBL] [Abstract][Full Text] [Related]
54. Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase. Nakano T; Petrash JM Biochemistry; 1996 Aug; 35(34):11196-202. PubMed ID: 8780524 [TBL] [Abstract][Full Text] [Related]
55. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
56. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+. Levy HR; Vought VE; Yin X; Adams MJ Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362 [TBL] [Abstract][Full Text] [Related]
57. Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening. Zhao HT; Soda M; Endo S; Hara A; El-Kabbani O Eur J Med Chem; 2010 Sep; 45(9):4354-7. PubMed ID: 20538382 [TBL] [Abstract][Full Text] [Related]
58. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori. Yamamoto K; Wilson DK Arch Biochem Biophys; 2013 Oct; 538(2):156-63. PubMed ID: 24012638 [TBL] [Abstract][Full Text] [Related]
59. The crystal structure of the aldose reductase.NADPH binary complex. Borhani DW; Harter TM; Petrash JM J Biol Chem; 1992 Dec; 267(34):24841-7. PubMed ID: 1447221 [TBL] [Abstract][Full Text] [Related]
60. Modular exchange of substrate-binding loops alters both substrate and cofactor specificity in a member of the aldo-keto reductase superfamily. Campbell E; Chuang S; Banta S Protein Eng Des Sel; 2013 Mar; 26(3):181-6. PubMed ID: 23175796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]