These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 9675126)

  • 1. Organic solvent binding to crystalline subtilisin1 in mostly aqueous media and in the neat solvents.
    Schmitke JL; Stern LJ; Klibanov AM
    Biochem Biophys Res Commun; 1998 Jul; 248(2):273-7. PubMed ID: 9675126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile.
    Schmitke JL; Stern LJ; Klibanov AM
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4250-5. PubMed ID: 9113975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile.
    Fitzpatrick PA; Ringe D; Klibanov AM
    Biochem Biophys Res Commun; 1994 Jan; 198(2):675-81. PubMed ID: 8297378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme crystal structure in a neat organic solvent.
    Fitzpatrick PA; Steinmetz AC; Ringe D; Klibanov AM
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8653-7. PubMed ID: 8378343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of x-ray crystal structures of an acyl-enzyme intermediate of subtilisin Carlsberg formed in anhydrous acetonitrile and in water.
    Schmitke JL; Stern LJ; Klibanov AM
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):12918-23. PubMed ID: 9789015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple solvent crystal structures: probing binding sites, plasticity and hydration.
    Mattos C; Bellamacina CR; Peisach E; Pereira A; Vitkup D; Petsko GA; Ringe D
    J Mol Biol; 2006 Apr; 357(5):1471-82. PubMed ID: 16488429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple solvent crystal structures of ribonuclease A: an assessment of the method.
    Dechene M; Wink G; Smith M; Swartz P; Mattos C
    Proteins; 2009 Sep; 76(4):861-81. PubMed ID: 19291738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.
    Sharma S; Tyagi R; Gupta MN; Singh TP
    Indian J Biochem Biophys; 2001; 38(1-2):34-41. PubMed ID: 11563328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synthesis of three- and tetrapeptides catalyzed by subtilisin suspensions in organic solvents].
    Getun IV; Filippova IIu; Lysogorskaia EN; Kolobanova SV; Oksenoĭt ES; Anisimova VV; Stepanov VM
    Bioorg Khim; 1998 Apr; 24(4):306-12. PubMed ID: 9612574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane.
    Castillo B; Solá RJ; Ferrer A; Barletta G; Griebenow K
    Biotechnol Bioeng; 2008 Jan; 99(1):9-17. PubMed ID: 17546684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation and stabilization of stabilisins in neat organic solvents.
    Schulze B; Klibanov AM
    Biotechnol Bioeng; 1991 Nov; 38(9):1001-6. PubMed ID: 18600863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the activity loss of hydrolases in organic solvents: II. a mechanistic study of subtilisin Carlsberg.
    Castillo B; Bansal V; Ganesan A; Halling P; Secundo F; Ferrer A; Griebenow K; Barletta G
    BMC Biotechnol; 2006 Dec; 6():51. PubMed ID: 17187678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic analysis of counterion effects on subtilisin enzymatic action in acetonitrile.
    Cianci M; Tomaszewski B; Helliwell JR; Halling PJ
    J Am Chem Soc; 2010 Feb; 132(7):2293-300. PubMed ID: 20099851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of secondary structure on the activity of enzymes suspended in organic solvents.
    Dong A; Meyer JD; Kendrick BS; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1996 Oct; 334(2):406-14. PubMed ID: 8900418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MD simulation of subtilisin BPN' in a crystal environment.
    Heiner AP; Berendsen HJ; van Gunsteren WF
    Proteins; 1992 Dec; 14(4):451-64. PubMed ID: 1438183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrophilic and hydrophobic organic solvent mixture enhances enzyme stability in organic media.
    Choi YS; Yoo YJ
    Biotechnol Lett; 2012 Jun; 34(6):1131-5. PubMed ID: 22361965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme.
    Nakasako M; Odaka M; Yohda M; Dohmae N; Takio K; Kamiya N; Endo I
    Biochemistry; 1999 Aug; 38(31):9887-98. PubMed ID: 10433695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.