These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 9675143)
1. Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Igarashi K; Hatada Y; Ikawa K; Araki H; Ozawa T; Kobayashi T; Ozaki K; Ito S Biochem Biophys Res Commun; 1998 Jul; 248(2):372-7. PubMed ID: 9675143 [TBL] [Abstract][Full Text] [Related]
2. Thermostabilization by proline substitution in an alkaline, liquefying alpha-amylase from Bacillus sp. strain KSM-1378. Igarashi K; Ozawa T; Ikawakitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S Biosci Biotechnol Biochem; 1999 Sep; 63(9):1535-40. PubMed ID: 10540739 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Priyadharshini R; Gunasekaran P Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074 [TBL] [Abstract][Full Text] [Related]
4. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
5. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis alpha-amylases and insights into engineering alpha-amylase variants active under acidic conditions. Lee S; Oneda H; Minoda M; Tanaka A; Inouye K J Biochem; 2006 Jun; 139(6):997-1005. PubMed ID: 16788050 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Bessler C; Schmitt J; Maurer KH; Schmid RD Protein Sci; 2003 Oct; 12(10):2141-9. PubMed ID: 14500872 [TBL] [Abstract][Full Text] [Related]
7. Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. Chi MC; Chen YH; Wu TJ; Lo HF; Lin LL J Biosci Bioeng; 2010 Jun; 109(6):531-8. PubMed ID: 20471589 [TBL] [Abstract][Full Text] [Related]
8. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591 [TBL] [Abstract][Full Text] [Related]
9. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Ghollasi M; Khajeh K; Naderi-Manesh H; Ghasemi A Appl Biochem Biotechnol; 2010 Sep; 162(2):444-59. PubMed ID: 20177823 [TBL] [Abstract][Full Text] [Related]
10. Significance of Tyr302, His235 and Asp194 in the α-amylase from Bacillus licheniformis. Qin Y; Fang Z; Pan F; Zhao Y; Li H; Wu H; Meng X Biotechnol Lett; 2012 May; 34(5):895-9. PubMed ID: 22261861 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of bacillus alpha-amylase. Lee S; Mouri Y; Minoda M; Oneda H; Inouye K J Biochem; 2006 Jun; 139(6):1007-15. PubMed ID: 16788051 [TBL] [Abstract][Full Text] [Related]
12. Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic bacillus alpha-amylase produced in Pichia pastoris. Tull D; Gottschalk TE; Svendsen I; Kramhøft B; Phillipson BA; Bisgård-Frantzen H; Olsen O; Svensson B Protein Expr Purif; 2001 Feb; 21(1):13-23. PubMed ID: 11162382 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Kim DH; Morimoto N; Saburi W; Mukai A; Imoto K; Takehana T; Koike S; Mori H; Matsui H Biosci Biotechnol Biochem; 2012; 76(7):1378-83. PubMed ID: 22785486 [TBL] [Abstract][Full Text] [Related]
14. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. Lo HF; Lin LL; Chiang WY; Chie MC; Hsu WH; Chang CT Arch Microbiol; 2002 Aug; 178(2):115-23. PubMed ID: 12115056 [TBL] [Abstract][Full Text] [Related]
15. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544 [TBL] [Abstract][Full Text] [Related]
16. Thermostabilization by Proline Substitution in an Alkaline, Liquefying α-Amylase from Bacillus sp. Strain KSM-1378. Igarashi K; Ozawa T; Ikawa-Kitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S Biosci Biotechnol Biochem; 1999; 63(9):1535-40. PubMed ID: 27389645 [TBL] [Abstract][Full Text] [Related]
18. The importance of an extra loop in the B-domain of an alpha-amylase from B. stearothermophilus US100. Khemakhem B; Ben Ali M; Aghajari N; Juy M; Haser R; Bejar S Biochem Biophys Res Commun; 2009 Jul; 385(1):78-83. PubMed ID: 19422796 [TBL] [Abstract][Full Text] [Related]
19. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Ghollasi M; Ghanbari-Safari M; Khajeh K Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an exo-acting intracellular alpha-amylase from the hyperthermophilic bacterium Thermotoga neapolitana. Park KM; Jun SY; Choi KH; Park KH; Park CS; Cha J Appl Microbiol Biotechnol; 2010 Mar; 86(2):555-66. PubMed ID: 19834705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]