These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 9675144)
21. Expression of the phosphonoalanine-degradative gene cluster from Variovorax sp. Pal2 is induced by growth on phosphonoalanine and phosphonopyruvate. Kulakova AN; Kulakov LA; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP FEMS Microbiol Lett; 2009 Mar; 292(1):100-6. PubMed ID: 19191873 [TBL] [Abstract][Full Text] [Related]
22. Study on EDTA-degrading bacterium Burkholderia cepacia YL-6 for bioaugmentation. Chen SC; Chen SL; Fang HY Bioresour Technol; 2005 Nov; 96(16):1782-7. PubMed ID: 16051084 [TBL] [Abstract][Full Text] [Related]
23. Efficient regioselective synthesis of 3'-O-crotonylfloxuridine catalysed by Pseudomonas cepacia lipase. Zhao Z; Zong M; Li N Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):45-51. PubMed ID: 18373494 [TBL] [Abstract][Full Text] [Related]
24. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Schulz T; Pleiss J; Schmid RD Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799 [TBL] [Abstract][Full Text] [Related]
25. Remote interactions explain the unusual regioselectivity of lipase from Pseudomonas cepacia toward the secondary hydroxyl of 2'-deoxynucleosides. Lavandera I; Fernández S; Magdalena J; Ferrero M; Grewal H; Savile CK; Kazlauskas RJ; Gotor V Chembiochem; 2006 Apr; 7(4):693-8. PubMed ID: 16491501 [TBL] [Abstract][Full Text] [Related]
26. Novel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100. Zaborina O; Daubaras DL; Zago A; Xun L; Saido K; Klem T; Nikolic D; Chakrabarty AM J Bacteriol; 1998 Sep; 180(17):4667-75. PubMed ID: 9721310 [TBL] [Abstract][Full Text] [Related]
27. First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria. Cescutti P; Scussolin S; Herasimenka Y; Impallomeni G; Bicego M; Rizzo R Biochem Biophys Res Commun; 2006 Jan; 339(3):821-6. PubMed ID: 16325774 [TBL] [Abstract][Full Text] [Related]
28. Substrate response in acid phosphatase activity of Pseudomonas pseudomallei and Pseudomonas cepacia, with special reference to tyrosine phosphatase. Kanai K; Kondo E Jpn J Med Sci Biol; 1991; 44(5-6):225-37. PubMed ID: 1725886 [TBL] [Abstract][Full Text] [Related]
29. A National Guard outbreak of Burkholderia cepacia infection and colonization secondary to intrinsic contamination of albuterol nebulization solution. Balkhy HH; Cunningham G; Francis C; Almuneef MA; Stevens G; Akkad N; Elgammal A; Alassiri A; Furukawa E; Chew FK; Sobh M; Daniel D; Poff G; Memish ZA Am J Infect Control; 2005 Apr; 33(3):182-8. PubMed ID: 15798674 [TBL] [Abstract][Full Text] [Related]
30. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation. Secundo F; Carrea G Biotechnol Bioeng; 2005 Nov; 92(4):438-46. PubMed ID: 16028297 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of 3-arsonopyruvate and its interaction with phosphoenolpyruvate mutase. Chawla S; Mutenda EK; Dixon HB; Freeman S; Smith AW Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):931-5. PubMed ID: 8948453 [TBL] [Abstract][Full Text] [Related]
32. The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-D-mannose pyrophosphorylase activities. Sousa SA; Moreira LM; Wopperer J; Eberl L; Sá-Correia I; Leitão JH Biochem Biophys Res Commun; 2007 Feb; 353(1):200-6. PubMed ID: 17184737 [TBL] [Abstract][Full Text] [Related]
33. Invasion of human type II pneumocytes by Burkholderia cepacia. Keig PM; Ingham E; Kerr KG Microb Pathog; 2001 Mar; 30(3):167-70. PubMed ID: 11273742 [TBL] [Abstract][Full Text] [Related]
34. Carbon-Phosphorus Lyase-the State of the Art. Stosiek N; Talma M; Klimek-Ochab M Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787 [TBL] [Abstract][Full Text] [Related]
35. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2. O'Loughlin SN; Graham RL; McMullan G; Ternan NG FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370 [TBL] [Abstract][Full Text] [Related]
36. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM. Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368 [TBL] [Abstract][Full Text] [Related]
37. A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity. Murata K; Higaki N; Kimura A J Bacteriol; 1989 Aug; 171(8):4504-6. PubMed ID: 2753863 [TBL] [Abstract][Full Text] [Related]
39. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Cooper RA; Kornberg HL Proc R Soc Lond B Biol Sci; 1967 Sep; 168(1012):263-80. PubMed ID: 4383554 [No Abstract] [Full Text] [Related]
40. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. Nakashita H; Watanabe K; Hara O; Hidaka T; Seto H J Antibiot (Tokyo); 1997 Mar; 50(3):212-9. PubMed ID: 9439692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]