BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9675163)

  • 1. A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an asn-Pro/Asp-Pro motif.
    Konvicka K; Guarnieri F; Ballesteros JA; Weinstein H
    Biophys J; 1998 Aug; 75(2):601-11. PubMed ID: 9675163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of the highly conserved seventh transmembrane domain of G-protein-coupled receptors.
    Berlose JP; Convert O; Brunissen A; Chassaing G; Lavielle S
    Eur J Biochem; 1994 Nov; 225(3):827-43. PubMed ID: 7957220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fourth transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle.
    Javitch JA; Shi L; Simpson MM; Chen J; Chiappa V; Visiers I; Weinstein H; Ballesteros JA
    Biochemistry; 2000 Oct; 39(40):12190-9. PubMed ID: 11015197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints.
    Pogozheva ID; Lomize AL; Mosberg HI
    Biophys J; 1998 Aug; 75(2):612-34. PubMed ID: 9675164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarity conserved positions in transmembrane domains of G-protein coupled receptors and bacteriorhodopsin.
    Zhang D; Weinstein H
    FEBS Lett; 1994 Jan; 337(2):207-12. PubMed ID: 8287978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.
    Trumpp-Kallmeyer S; Hoflack J; Bruinvels A; Hibert M
    J Med Chem; 1992 Sep; 35(19):3448-62. PubMed ID: 1328638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of class-determining residues in G protein-coupled receptors by sequence analysis.
    Kuipers W; Oliveira L; Vriend G; Ijzerman AP
    Recept Channels; 1997; 5(3-4):159-74. PubMed ID: 9606720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modelling studies on G protein-coupled receptors: from sequence to structure?
    van Neuren AS; Müller G; Klebe G; Moroder L
    J Recept Signal Transduct Res; 1999; 19(1-4):341-53. PubMed ID: 10071769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered ligand dissociation rates in thyrotropin-releasing hormone receptors mutated in glutamine 105 of transmembrane helix III.
    del Camino D; Barros F; Pardo LA; de la Peña P
    Biochemistry; 1997 Mar; 36(11):3308-18. PubMed ID: 9116009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT(2A) serotonin receptor but does not participate in activation via a "salt-bridge disruption" mechanism.
    Kristiansen K; Kroeze WK; Willins DL; Gelber EI; Savage JE; Glennon RA; Roth BL
    J Pharmacol Exp Ther; 2000 Jun; 293(3):735-46. PubMed ID: 10869371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors.
    Baldwin JM; Schertler GF; Unger VM
    J Mol Biol; 1997 Sep; 272(1):144-64. PubMed ID: 9299344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor.
    Xie XQ; Chen JZ; Billings EM
    Proteins; 2003 Nov; 53(2):307-19. PubMed ID: 14517981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin.
    Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD
    Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minireview: Insights into G protein-coupled receptor function using molecular models.
    Gershengorn MC; Osman R
    Endocrinology; 2001 Jan; 142(1):2-10. PubMed ID: 11145559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the conserved residues between halobacterial retinal proteins and G-protein coupled receptors: implications for GPCR modeling.
    Metzger TG; Paterlini MG; Portoghese PS; Ferguson DM
    J Chem Inf Comput Sci; 1996; 36(4):857-61. PubMed ID: 8768770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of G protein-coupled receptors from fragments: identification of functional receptors with discontinuities in each of the loops connecting transmembrane segments.
    Martin NP; Leavitt LM; Sommers CM; Dumont ME
    Biochemistry; 1999 Jan; 38(2):682-95. PubMed ID: 9888809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualisation and integration of G protein-coupled receptor related information help the modelling: description and applications of the Viseur program.
    Campagne F; Jestin R; Reversat JL; Bernassau JM; Maigret B
    J Comput Aided Mol Des; 1999 Nov; 13(6):625-43. PubMed ID: 10584220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated method for modeling seven-helix transmembrane receptors from experimental data.
    Herzyk P; Hubbard RE
    Biophys J; 1995 Dec; 69(6):2419-42. PubMed ID: 8599649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.