These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9675195)
21. Sarcomere lattice geometry influences cooperative myosin binding in muscle. Tanner BC; Daniel TL; Regnier M PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823 [TBL] [Abstract][Full Text] [Related]
22. Structural features of cross-bridges in isometrically contracting skeletal muscle. Kraft T; Mattei T; Radocaj A; Piep B; Nocula C; Furch M; Brenner B Biophys J; 2002 May; 82(5):2536-47. PubMed ID: 11964242 [TBL] [Abstract][Full Text] [Related]
23. Electron probe X-ray microanalysis of cultured myogenic C2C12 cells with scanning and scanning transmission electron microscopy. Tylko G; Karasiński J; Wróblewski R; Roomans GM; Kilarski WM Folia Histochem Cytobiol; 2000; 38(2):79-84. PubMed ID: 10833672 [TBL] [Abstract][Full Text] [Related]
24. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers. Iwamoto H Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041 [TBL] [Abstract][Full Text] [Related]
25. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. Riley DA; Bain JL; Thompson JL; Fitts RH; Widrick JJ; Trappe SW; Trappe TA; Costill DL J Appl Physiol (1985); 2000 Feb; 88(2):567-72. PubMed ID: 10658024 [TBL] [Abstract][Full Text] [Related]
26. Does thin filament compliance diminish the cross-bridge kinetics? A study in rabbit psoas fibers. Wang G; Ding W; Kawai M Biophys J; 1999 Feb; 76(2):978-84. PubMed ID: 9916028 [TBL] [Abstract][Full Text] [Related]
27. Unusual thick and thin filament packing in a crustacean muscle. Eastwood AB; Wood DS; Reuben JP J Cell Biol; 1978 Apr; 77(1):48-58. PubMed ID: 659513 [TBL] [Abstract][Full Text] [Related]
28. Structure and periodicities of cross-bridges in relaxation, in rigor, and during contractions initiated by photolysis of caged Ca2+. Lenart TD; Murray JM; Franzini-Armstrong C; Goldman YE Biophys J; 1996 Nov; 71(5):2289-306. PubMed ID: 8913571 [TBL] [Abstract][Full Text] [Related]
29. The effects of chemical cross-linking agents on calcium-induced structural changes in skinned muscle fibers. Origin within thick filaments detected by optical diffraction methods. Rieser GD; Sabbadini RA; Paolini PJ Biochim Biophys Acta; 1982 Oct; 707(2):178-89. PubMed ID: 6982725 [TBL] [Abstract][Full Text] [Related]
30. Rigor-force producing cross-bridges in skeletal muscle fibers activated by a substoichiometric amount of ATP. Yamada T; Takezawa Y; Iwamoto H; Suzuki S; Wakabayashi K Biophys J; 2003 Sep; 85(3):1741-53. PubMed ID: 12944289 [TBL] [Abstract][Full Text] [Related]
31. [The structure of thick filaments on longitudinal sections of rabbit psoas muscle]. Podlubnaia ZA; Latsabidze IL; Lednev VV Biofizika; 1989; 34(1):91-6. PubMed ID: 2730933 [TBL] [Abstract][Full Text] [Related]
33. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Schoenberg M Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996 [TBL] [Abstract][Full Text] [Related]
34. Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin. Bennett PM; Hodkin TE; Hawkins C J Struct Biol; 1997 Oct; 120(1):93-104. PubMed ID: 9356297 [TBL] [Abstract][Full Text] [Related]
35. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. Somlyo AV; Gonzalez-Serratos HG; Shuman H; McClellan G; Somlyo AP J Cell Biol; 1981 Sep; 90(3):577-94. PubMed ID: 6974735 [TBL] [Abstract][Full Text] [Related]
36. The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap. Fuchs F Biochim Biophys Acta; 1977 Apr; 491(2):523-31. PubMed ID: 403955 [TBL] [Abstract][Full Text] [Related]
37. Calcium and magnesium binding to thin and thick filaments in skinned muscle fibres: electron probe analysis. Kitazawa T; Shuman H; Somlyo AP J Muscle Res Cell Motil; 1982 Dec; 3(4):437-54. PubMed ID: 6985147 [TBL] [Abstract][Full Text] [Related]
38. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Linari M; Dobbie I; Reconditi M; Koubassova N; Irving M; Piazzesi G; Lombardi V Biophys J; 1998 May; 74(5):2459-73. PubMed ID: 9591672 [TBL] [Abstract][Full Text] [Related]
39. A model of cross-bridge attachment to actin in the A*M*ATP state based on x-ray diffraction from permeabilized rabbit psoas muscle. Gu J; Xu S; Yu LC Biophys J; 2002 Apr; 82(4):2123-33. PubMed ID: 11916868 [TBL] [Abstract][Full Text] [Related]
40. [Monitoring the orientation of myosin bridges on two-dimensional maps of birefringence in a single muscle fiber]. Skrebnitskaia LK; Neĭman SA; Rozhdestvenskaia ZE; Vishniakov GN Biofizika; 2002; 47(4):686-90. PubMed ID: 12298207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]