These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9675211)

  • 21. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs.
    Dias MV; Tyrakis P; Domingues RR; Paes Leme AF; Blundell TL
    Structure; 2014 Jan; 22(1):94-103. PubMed ID: 24210757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study.
    Liu F; Zhang J
    J Biochem; 2020 Oct; 168(4):417-425. PubMed ID: 32492152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution of the conformation and alignment tensors for the binding of trimethoprim and its analogs to dihydrofolate reductase: 3D-quantitative structure-activity relationship study using molecular shape analysis, 3-way partial least-squares regression, and 3-way factor analysis.
    Dunn WJ; Hopfinger AJ; Catana C; Duraiswami C
    J Med Chem; 1996 Nov; 39(24):4825-32. PubMed ID: 8941396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallization of inhibitor complexes of an N-terminal 24 kDa fragment of the DNA gyrase B protein.
    Lewis RJ; Singh OM; Smith CV; Maxwell A; Skarzynski T; Wonacott AJ; Wigley DB
    J Mol Biol; 1994 Aug; 241(1):128-30. PubMed ID: 8051702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate and inhibitor specificity of Mycobacterium avium dihydrofolate reductase.
    Böck RA; Soulages JL; Barrow WW
    FEBS J; 2007 Jul; 274(13):3286-98. PubMed ID: 17542991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray crystallography of catechol O-methyltransferase: perspectives for target-based drug development.
    Vidgren J
    Adv Pharmacol; 1998; 42():328-31. PubMed ID: 9327907
    [No Abstract]   [Full Text] [Related]  

  • 30. UV resonance Raman spectroscopy of the supramolecular ligand guanidiniocarbonyl indole (GCI) with 244 nm laser excitation.
    Holtum T; Kumar V; Sebena D; Voskuhl J; Schlücker S
    Beilstein J Org Chem; 2020; 16():2911-2919. PubMed ID: 33299489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic studies on catechol O-methyltransferase. Product inhibition and the nature of the catechol binding site.
    Coward JK; Slixz EP; Wu FY
    Biochemistry; 1973 Jun; 12(12):2291-7. PubMed ID: 4736330
    [No Abstract]   [Full Text] [Related]  

  • 32. UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics.
    Asamoto DK; Kim JE
    Methods Mol Biol; 2019; 2003():327-349. PubMed ID: 31218624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitor design to target a unique feature in the folate pocket of Staphylococcus aureus dihydrofolate reductase.
    Muddala NP; White JC; Nammalwar B; Pratt I; Thomas LM; Bunce RA; Berlin KD; Bourne CR
    Eur J Med Chem; 2020 Aug; 200():112412. PubMed ID: 32502861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transferred nuclear overhauser effect in nuclear magnetic resonance diffusion measurements of ligand-protein binding.
    Lucas LH; Yan J; Larive CK; Zartler ER; Shapiro MJ
    Anal Chem; 2003 Feb; 75(3):627-34. PubMed ID: 12585494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopic studies of the structures, energetics, and bond distortions of substrates bound to enzymes.
    Deng H; Callender R
    Methods Enzymol; 1999; 308():176-201. PubMed ID: 10507005
    [No Abstract]   [Full Text] [Related]  

  • 36. Cloning, expression and structure of catechol-O-methyltransferase.
    Lundström K; Tenhunen J; Tilgmann C; Karhunen T; Panula P; Ulmanen I
    Biochim Biophys Acta; 1995 Aug; 1251(1):1-10. PubMed ID: 7647086
    [No Abstract]   [Full Text] [Related]  

  • 37. High suitability of tryptophan residues as a spectroscopic thermometer for local temperature in proteins under nonequilibrium conditions.
    Yamashita S; Mizuno M; Mizutani Y
    J Chem Phys; 2022 Feb; 156(7):075101. PubMed ID: 35183093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UV resonance Raman study of TrpZip2 and related peptides: π-π interactions of tryptophan.
    Schlamadinger DE; Leigh BS; Kim JE
    J Raman Spectrosc; 2012 Oct; 43(10):1459-1464. PubMed ID: 25525290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy.
    López-Peña I; Leigh BS; Schlamadinger DE; Kim JE
    Biochemistry; 2015 Aug; 54(31):4770-83. PubMed ID: 26219819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extension of the tryptophan chi2,1 dihedral angle-W3 band frequency relationship to a full rotation: correlations and caveats.
    Juszczak LJ; Desamero RZ
    Biochemistry; 2009 Mar; 48(12):2777-87. PubMed ID: 19267450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.